INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance...INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance, higher emission factor and so on, air pollution caused by the traffic issues becomes the focus of people attention. The harmful substances are gradually accumulated to atmosphere particles surrounding roads due to dust particles (soil dusts, road dusts, construction dusts), coal emissions, industrial emissions, vehicle emissions, biomass burning, secondary particles, which has a certain harmful influence to the atmosphere, soil and plants surrounding roads.展开更多
Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-fe...Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.展开更多
This paper assesses the hazardousness, vulnerability and risk of debris flow and landslide in China and compiles maps with a scale of 1:6000000, based on Geographical Information System (GIS) technology, hazard reg...This paper assesses the hazardousness, vulnerability and risk of debris flow and landslide in China and compiles maps with a scale of 1:6000000, based on Geographical Information System (GIS) technology, hazard regionalization map, socioeconomic data from 2000. Integrated hazardousness of debris flow and landslide is equivalent to the sum of debris flow hazardousness and landslide hazardousness. Vulnerability is assessed by employing a simplified assessment model. Risk is calculated by the following formula: Risk = Hazardousness × Vulnerability. The analysis results of assessment of hazardousness, vulnerability and risk show that there are extremely high risk regions of 104 km2, high risk regions of 283008 km2, moderate risk regions of 3161815 km2, low risk regions of 3299604km2, and extremely low risk regions of 2681709 km2. Exploitation activities should be prohibited in extremely high risk and high risk regions and restricted in moderate risk regions. The present study on risk analysis of debris flow and landslide not only sheds new light on the future work in this direction but also provides a scientific basis for disaster prevention and mitigation policy making.展开更多
In order to ensure the safety of engine life limited parts (ELLP) according to airworthiness regulations, a numerical approach integrating one-way fluid structure interaction (FSI) and probabilistic risk assessme...In order to ensure the safety of engine life limited parts (ELLP) according to airworthiness regulations, a numerical approach integrating one-way fluid structure interaction (FSI) and probabilistic risk assessment (PRA) is developed, by which the variation of flow parameters in a rotor-stator cavity on the safety of gas turbine disks is investigated. The results indicate that the flow parameters affect the probability of fracture of a gas turbine disk since they can change the distribution of stress and temperature of the disk. The failure probability of the disk rises with increasing rotation Reynolds number and Chebyshev number, but descends with increasing inlet Reynolds number. In addition, a sampling based sensitivity analysis with finite difference method is conducted to determine the sensitivities of the safety with respect to the flow parameters. The sensitivity estimates show that the rotation Reynolds number is the dominant variable in safety analysis of a rotor-stator cavity among the flow parameters.展开更多
基金financially supported by National Major Scientific Instrument Equipment Development Special(2011YQ060111)
文摘INTRODUCTION In recent years, with the gradual improvement of road construction, the rapid increase of the number of motor vehicles, vehicle emissions and the current poor vehicle performance, poor vehicle maintenance, higher emission factor and so on, air pollution caused by the traffic issues becomes the focus of people attention. The harmful substances are gradually accumulated to atmosphere particles surrounding roads due to dust particles (soil dusts, road dusts, construction dusts), coal emissions, industrial emissions, vehicle emissions, biomass burning, secondary particles, which has a certain harmful influence to the atmosphere, soil and plants surrounding roads.
文摘Objective:To analyze the existing risks in breast milk management at the neonatal department and provide corresponding countermeasures.Methods:22 risk events were identified in 7 risk links in the process of bottle-feeding of breast milk.Hazard Vulnerability Analysis based on the Kaiser model was applied to investigate and evaluate the risk events.Results:High-risk events include breast milk quality inspection,hand hygiene during collection,disinfection of collectors,cold chain management,hand hygiene during the reception,breast milk closed-loop management,and post-collection disposal.Root cause analysis of high-risk events was conducted and breast milk management strategies outside the hospital and within the neonatal department were proposed.Conclusion:Hazard Vulnerability Analysis based on the Kaiser model can identify and assess neonatal breast milk management risks effectively,which helps improve the management of neonatal breast milk.It is conducive to the safe development and promotion of bottle feeding of breast milk for neonates,ensuring the quality of medical services and the safety of children.
文摘This paper assesses the hazardousness, vulnerability and risk of debris flow and landslide in China and compiles maps with a scale of 1:6000000, based on Geographical Information System (GIS) technology, hazard regionalization map, socioeconomic data from 2000. Integrated hazardousness of debris flow and landslide is equivalent to the sum of debris flow hazardousness and landslide hazardousness. Vulnerability is assessed by employing a simplified assessment model. Risk is calculated by the following formula: Risk = Hazardousness × Vulnerability. The analysis results of assessment of hazardousness, vulnerability and risk show that there are extremely high risk regions of 104 km2, high risk regions of 283008 km2, moderate risk regions of 3161815 km2, low risk regions of 3299604km2, and extremely low risk regions of 2681709 km2. Exploitation activities should be prohibited in extremely high risk and high risk regions and restricted in moderate risk regions. The present study on risk analysis of debris flow and landslide not only sheds new light on the future work in this direction but also provides a scientific basis for disaster prevention and mitigation policy making.
基金Innovation Plan of Aero Engine Complex System Safety by the Ministry of Education Chang Jiang Scholars of China (IRT0905)
文摘In order to ensure the safety of engine life limited parts (ELLP) according to airworthiness regulations, a numerical approach integrating one-way fluid structure interaction (FSI) and probabilistic risk assessment (PRA) is developed, by which the variation of flow parameters in a rotor-stator cavity on the safety of gas turbine disks is investigated. The results indicate that the flow parameters affect the probability of fracture of a gas turbine disk since they can change the distribution of stress and temperature of the disk. The failure probability of the disk rises with increasing rotation Reynolds number and Chebyshev number, but descends with increasing inlet Reynolds number. In addition, a sampling based sensitivity analysis with finite difference method is conducted to determine the sensitivities of the safety with respect to the flow parameters. The sensitivity estimates show that the rotation Reynolds number is the dominant variable in safety analysis of a rotor-stator cavity among the flow parameters.