With the rapid development of the wind generation,uncertainties of random wind and load bring some inevitable impacts on the security of power system. Once the uncertainty causes line power to exceed its limit, line o...With the rapid development of the wind generation,uncertainties of random wind and load bring some inevitable impacts on the security of power system. Once the uncertainty causes line power to exceed its limit, line overload will occur. The paper presents the risk control of transmission line overload for windintegrated power systems. Firstly, a risk control model of line overload is proposed considering the uncertainties of loads,generator outputs and wind powers. The generation cost and security level of system associated with overload can be optimally controlled. Then path following interior point method is employed to carry out the optimal control. Finally the simulation is made on the modified IEEE-30 bus system. Results show that the risk of line overload is effectively reduced through the optimization of control variables.展开更多
Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or t...Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>展开更多
Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide h...Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.展开更多
基金National Natural Science Foundations of China(Nos.51007052,71201097)Natural Science Foundation of Shanghai,China(No.14ZR1415300)
文摘With the rapid development of the wind generation,uncertainties of random wind and load bring some inevitable impacts on the security of power system. Once the uncertainty causes line power to exceed its limit, line overload will occur. The paper presents the risk control of transmission line overload for windintegrated power systems. Firstly, a risk control model of line overload is proposed considering the uncertainties of loads,generator outputs and wind powers. The generation cost and security level of system associated with overload can be optimally controlled. Then path following interior point method is employed to carry out the optimal control. Finally the simulation is made on the modified IEEE-30 bus system. Results show that the risk of line overload is effectively reduced through the optimization of control variables.
文摘Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>
文摘Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.