期刊文献+
共找到3,199篇文章
< 1 2 160 >
每页显示 20 50 100
Cardiovascular disease: Risk factors and applicability of a risk model in a Greek cohort of renal transplant recipients 被引量:4
1
作者 Nikolaos-Andreas Anastasopoulos Evangelia Dounousi +5 位作者 Evangelos Papachristou Charalampos Pappas Eleni Leontaridou Eirini Savvidaki Dimitrios Goumenos Michael Mitsis 《World Journal of Transplantation》 2017年第1期49-56,共8页
AIM To investigate the incidence and the determinants of cardiovascular morbidity in Greek renal transplant recipients(RTRs) expressed as major advance cardiac event(MACE) rate. METHODS Two hundred and forty-two adult... AIM To investigate the incidence and the determinants of cardiovascular morbidity in Greek renal transplant recipients(RTRs) expressed as major advance cardiac event(MACE) rate. METHODS Two hundred and forty-two adult patients with a functioning graft for at least three months and availabledata that were followed up on the August 31, 2015 at two transplant centers of Western Greece were included in this study. Baseline recipients' data elements included demographics, clinical characteristics, history of comorbid conditions and laboratory parameters. Follow-up data regarding MACE occurrence were collected retrospectively from the patients' records and MACE risk score was calculated for each patient. RESULTS The mean age was 53 years(63.6% males) and 47 patients(19.4%) had a pre-existing cardiovascular disease(CVD) before transplantation. The mean estimated glomerular filtration rate was 52 ± 17 mL /min per 1.73 m2. During follow-up 36 patients(14.9%) suffered a MACE with a median time to MACE 5 years(interquartile range: 2.2-10 years). Recipients with a MACE compared to recipients without a MACE had a significantly higher mean age(59 years vs 52 years, P < 0.001) and a higher prevalence of pre-existing CVD(44.4% vs 15%, P < 0.001). The 7-year predicted mean risk for MACE was 14.6% ± 12.5% overall. In RTRs who experienced a MACE, the predicted risk was 22.3% ± 17.1% and was significantly higher than in RTRs without an event 13.3% ± 11.1%(P = 0.003). The discrimination ability of the model in the Greek database of RTRs was good with an area under the receiver operating characteristics curve of 0.68(95%CI: 0.58-0.78).CONCLUSION In this Greek cohort of RTRs, MACE occurred in 14.9% of the patients, pre-existing CVD was the main risk factor, while MACE risk model was proved a dependable utility in predicting CVD post RT. 展开更多
关键词 CARDIOVASCULAR disease Major ADVANCE cardiac event risk factors risk model Kidney Transplantation
下载PDF
Navigating breast cancer brain metastasis:Risk factors,prognostic indicators,and treatment perspectives
2
作者 Jayalingappa Karthik Amit Sehrawat +1 位作者 Mayank Kapoor Deepak Sundriyal 《World Journal of Clinical Oncology》 2024年第5期594-598,共5页
In this editorial,we comment on the article by Chen et al.We specifically focus on the risk factors,prognostic factors,and management of brain metastasis(BM)in breast cancer(BC).BC is the second most common cancer to ... In this editorial,we comment on the article by Chen et al.We specifically focus on the risk factors,prognostic factors,and management of brain metastasis(BM)in breast cancer(BC).BC is the second most common cancer to have BM after lung cancer.Independent risk factors for BM in BC are:HER-2 positive BC,triplenegative BC,and germline BRCA mutation.Other factors associated with BM are lung metastasis,age less than 40 years,and African and American ancestry.Even though risk factors associated with BM in BC are elucidated,there is a lack of data on predictive models for BM in BC.Few studies have been made to formulate predictive models or nomograms to address this issue,where age,grade of tumor,HER-2 receptor status,and number of metastatic sites(1 vs>1)were predictive of BM in metastatic BC.However,none have been used in clinical practice.National Comprehensive Cancer Network recommends screening of BM in advanced BC only when the patient is symptomatic or suspicious of central nervous system symptoms;routine screening for BM in BC is not recommended in the guidelines.BM decreases the quality of life and will have a significant psychological impact.Further studies are required for designing validated nomograms or predictive models for BM in BC;these models can be used in the future to develop treatment approaches to prevent BM,which improves the quality of life and overall survival. 展开更多
关键词 Breast cancer Brain metastasis HER2 positive Metastatic breast cancer risk factors Predictive models
下载PDF
Comprehensive security risk factor identification for small reservoirs with heterogeneous data based on grey relational analysis model 被引量:6
3
作者 Jing-chun Feng Hua-ai Huang +1 位作者 Yao Yin Ke Zhang 《Water Science and Engineering》 EI CAS CSCD 2019年第4期330-338,共9页
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ... Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data. 展开更多
关键词 Security risk factor identification Heterogeneous data Grey relational analysis model Relational degree Information entropy Conditional entropy Small reservoir GUANGXI
下载PDF
Nomograms and risk score models for predicting survival in rectal cancer patients with neoadjuvant therapy 被引量:8
4
作者 Fang-Ze Wei Shi-Wen Mei +6 位作者 Jia-Nan Chen Zhi-Jie Wang Hai-Yu Shen Juan Li Fu-Qiang Zhao Zheng Liu Qian Liu 《World Journal of Gastroenterology》 SCIE CAS 2020年第42期6638-6657,共20页
BACKGROUND Colorectal cancer is a common digestive cancer worldwide.As a comprehensive treatment for locally advanced rectal cancer(LARC),neoadjuvant therapy(NT)has been increasingly used as the standard treatment for... BACKGROUND Colorectal cancer is a common digestive cancer worldwide.As a comprehensive treatment for locally advanced rectal cancer(LARC),neoadjuvant therapy(NT)has been increasingly used as the standard treatment for clinical stage II/III rectal cancer.However,few patients achieve a complete pathological response,and most patients require surgical resection and adjuvant therapy.Therefore,identifying risk factors and developing accurate models to predict the prognosis of LARC patients are of great clinical significance.AIM To establish effective prognostic nomograms and risk score prediction models to predict overall survival(OS)and disease-free survival(DFS)for LARC treated with NT.METHODS Nomograms and risk factor score prediction models were based on patients who received NT at the Cancer Hospital from 2015 to 2017.The least absolute shrinkage and selection operator regression model were utilized to screen for prognostic risk factors,which were validated by the Cox regression method.Assessment of the performance of the two prediction models was conducted using receiver operating characteristic curves,and that of the two nomograms was conducted by calculating the concordance index(C-index)and calibration curves.The results were validated in a cohort of 65 patients from 2015 to 2017.RESULTS Seven features were significantly associated with OS and were included in the OS prediction nomogram and prediction model:Vascular_tumors_bolt,cancer nodules,yN,body mass index,matchmouth distance from the edge,nerve aggression and postoperative carcinoembryonic antigen.The nomogram showed good predictive value for OS,with a C-index of 0.91(95%CI:0.85,0.97)and good calibration.In the validation cohort,the C-index was 0.69(95%CI:0.53,0.84).The risk factor prediction model showed good predictive value.The areas under the curve for 3-and 5-year survival were 0.811 and 0.782.The nomogram for predicting DFS included ypTNM and nerve aggression and showed good calibration and a C-index of 0.77(95%CI:0.69,0.85).In the validation cohort,the C-index was 0.71(95%CI:0.61,0.81).The prediction model for DFS also had good predictive value,with an AUC for 3-year survival of 0.784 and an AUC for 5-year survival of 0.754.CONCLUSION We established accurate nomograms and prediction models for predicting OS and DFS in patients with LARC after undergoing NT. 展开更多
关键词 Neoadjuvant therapy Rectal cancer NOMOGRAM Overall survival Diseasefree survival risk factor score prediction model
下载PDF
Evaluation of Medical Costs of Kidney Diseases and Risk Factors in Japan 被引量:3
5
作者 Kazumitsu Nawata Moriyo Kimura 《Health》 2017年第13期1734-1749,共16页
Background: Kidney (renal) diseases and dialysis are among the most costly disorders and represent a worldwide burden. In this study, we evaluate the medical costs for individuals with kidney diseases and risk factors... Background: Kidney (renal) diseases and dialysis are among the most costly disorders and represent a worldwide burden. In this study, we evaluate the medical costs for individuals with kidney diseases and risk factors for the diseases in Japan. Data and Methods: The dataset used contained 113,979 medical checkups and 3,172,066 medical cost records obtained from 48,022 individuals in one health insurance society. The sample period was April 2013 to March 2016. We evaluated the distribution of all medical costs, and those of kidney diseases specifically. Then the power transformation Tobit model was used to remove the effects of other variables. Finally, a probit analysis was used to analyze the risk factors. Results: In 0.25% of all cases, individuals were diagnosed with kidney diseases. An individual with kidney disease cost 14.5 times more than those without kidney disease. If the diseases progressed into chronic kidney disease (CKD), the medical costs increased substantially. Even disregarding various characteristics of individuals, this conclusion did not vary. We found important risk factors included diabetes and blood pressure problems. In particular, an individual with both factors had a high probability of developing kidney disease. Conclusion: Kidney diseases are much costlier than other diseases. Screening high-risk individuals, educating patients, and ensuring that treatment begins at an early stage are critically important to controlling medical costs. Limitations: The dataset was observatory, and the sample period was only 3 years. 展开更多
关键词 Kidney DISEASE RENAL DISEASE DIALYSIS Medical Costs risk factor Power Transformation TOBIT model PROBIT model
下载PDF
Risk factors for Parkinson disease and the path analysis: One-to-one paired design
6
作者 Xianhua Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第2期117-120,共4页
BACKGROUND: Parkinson disease (PD) results from the reduce of neurotransmitter dopamine that transmits intracellular information in brain caused by some reasons, then leads to the dynamic disequilibrium with anothe... BACKGROUND: Parkinson disease (PD) results from the reduce of neurotransmitter dopamine that transmits intracellular information in brain caused by some reasons, then leads to the dynamic disequilibrium with another neurotransmitter of acetylcholine which is relatively hyperactive. The main causes for PD are still unclear. OBJECTIVE: To screen out the risk factors of PD by means of univariate analysis and multivariate Logistic regression analysis, and investigate the manner of actions between various factors and PD, so as to provide clues for the etiological study of PD. DESIGN: A paired design, Logistic regression analysis, path analysis. SETTING: Department of Scientific Research, Shandong Institute of Physical Education. PARTICIPANTS: Totally 157 PD patients were selected from the Department of Neurology, Qilu Hospital of Shandong University from November 2001 to October 2002. Inclusive criteria: PD was diagnosed according to the standard set by the Fourth National Seminar on Extrapyramidal Disease, Parkinsonian syndromes caused by stroke, carbon monoxide poisoning, encephalitis, drugs, etc. were excluded. Another 157 patients treated in the same department at the same period were selected as the control group, they were the same in sex as those in the patient group, within 3 years older or younger than those in the patient group, and without PD or other extrapyramidal diseases. METHODS: (1) The general conditions were investigated in all the subjects, including general conditions, social behavioral factor, environmental factor, genetic factor, life events, and previous disease; There were 12 main variables, including educational level, family history, mental labour, contact to insecticides, living place before school-age, smoking index, drinking index, tea-drinking index, history of brain trauma, history of cardiovascular disease, history of diabetes mellitus, and history of depression. (2) SAS6.12 software and SPSS 10.0 software were used in the conditional Logistic regression analysis and path analysis respectively. MAIN OUTCOME MEASURES: The results of 12-variable univariate and multivariate analyses; Correlation between main variables and PD; Effects of the factors. RESULTS: All the subjects were involved in the analysis of results. (1) The results of Logistic regression analysis showed that family history, mental labour, insecticides, drinking index and history of depression all had significant positive correlations with PD (univariate analysis: OR=1.405- 5.429, P 〈 0.05- 0.01; multivariate analysis: OR=2.029- 6.754, P 〈 0.05- 0.01), whereas smoking had significant negative correlations with PD [univariate analysis: odd ratio (OR)=0.765, P 〈 0.05; multivariate analysis: OR =0.489, P 〈 0.01]. (2) The path analysis showed that family history, mental labour, insecticides, smoking, drinking and history of depression had direct effects on PD occurrence [(path coefficient= - 0.218 to 0.204, P 〈 0.05 -0.01)]; Insecticides could cause PD indirectly on the basis of family history (genetic susceptibility) (path coefficient=0.946, P 〈 0.01); Insecticides could also cause PD by drinking (path coefficient=0.165, P 〈 0.01) Drinking could cause PD indirectly on the basis of family history (path coefficient=0.043, P 〈 0.01 ). CONCLUSION: The main risk factors of PD are family history, history of depression, drinking, mental labour and insecticides, whereas the protective factor is smoking. PD attack has genetic susceptibility, insecticides and drinking can cause PD on the basis of PD family history. The risk of PD can be decreased by reducing the occasion for contacting the environmental risk factors. 展开更多
关键词 Parkinson disease risk factors Logistic models
下载PDF
Development of a Risk Model for Abdominal Wound Dehiscence
7
作者 Mujahid Ahmad Mir Farzana Manzoor +3 位作者 Balvinder Singh Imtiyaz Ahmad Sofi Abu Zaved Rameez Sheikh Imran Farooq 《Surgical Science》 2016年第10期466-474,共10页
Objectives: To identify independent risk factors for abdominal wound dehiscence and develop a risk model to recognize high risk patients. Methods: The samples studied were patients who underwent midline laparotomy in ... Objectives: To identify independent risk factors for abdominal wound dehiscence and develop a risk model to recognize high risk patients. Methods: The samples studied were patients who underwent midline laparotomy in the department of surgery, SMHS Hospital Srinagar from March 2009 to April 2015. For each case of abdominal wound dehiscence, three controls were selected from a group of patients who had undergone open abdominal surgery as close as possible in time. Preoperative, perioperative, and postoperative variables and in-hospital mortality were studied for all patients. Cases were compared with controls using the chi-square test or the Mann-Whitney U-test for categorical or continuous data, respectively. Subsequently, multivariate stepwise logistic regression with backwards elimination test used to identify main independent risk factors of abdominal wound dehiscence. The resulting regression coefficients for the major risk factors were used as weights for these variables to calculate a risk score for abdominal wound dehiscence. Results: 140 cases of abdominal wound dehiscence were reported and compared with 420 selected controls. All variables that were significant in univariate analyses were entered in a multivariate stepwise logistic regression to determine which variables were significant independent risk factors. Major independent risk factors were male gender, chronic pulmonary disease, corticosteroid use, smoking, obesity, anemia, jaundice, ascites, and sepsis, type of surgery, postoperative coughing, and wound infection. Based on these findings, a risk model was developed. Conclusions: The model can give an estimate of the risk of abdominal wound dehiscence for individual patients. High-risk patients may be planned preventive wound closing with reinforcements as mesh. 展开更多
关键词 Abdominal Wound Dehiscence risk factors risk model Abdominal Complications
下载PDF
Stochastic Modelling of Vulnerability Life Cycle and Security Risk Evaluation 被引量:4
8
作者 Sasith M. Rajasooriya Chris P. Tsokos Pubudu Kalpani Kaluarachchi 《Journal of Information Security》 2016年第4期269-279,共11页
The objective of the present study is to propose a risk evaluation statistical model for a given vulnerability by examining the Vulnerability Life Cycle and the CVSS score. Having a better understanding of the behavio... The objective of the present study is to propose a risk evaluation statistical model for a given vulnerability by examining the Vulnerability Life Cycle and the CVSS score. Having a better understanding of the behavior of vulnerability with respect to time will give us a great advantage. Such understanding will help us to avoid exploitations and introduce patches for a particular vulnerability before the attacker takes the advantage. Utilizing the proposed model one can identify the risk factor of a specific vulnerability being exploited as a function of time. Measuring of the risk factor of a given vulnerability will also help to improve the security level of software and to make appropriate decisions to patch the vulnerability before an exploitation takes place. 展开更多
关键词 Stochastic modelling SECURITY risk Evaluation Vulnerability Life Cycle risk factor
下载PDF
系统性红斑狼疮并发股骨头坏死危险因素列线图预测模型的建立和验证
9
作者 徐文博 汪利合 +1 位作者 李松伟 史鹏博 《中国组织工程研究》 CAS 北大核心 2025年第15期3215-3226,共12页
背景:股骨头坏死是系统性红斑狼疮患者常见的并发症,若能早期对其发生风险进行预测与验证,将有助于避免或延缓股骨头坏死的发展。目的:分析系统性红斑狼疮患者并发股骨头坏死的危险因素,构建系统性红斑狼疮患者并发股骨头坏死的列线图... 背景:股骨头坏死是系统性红斑狼疮患者常见的并发症,若能早期对其发生风险进行预测与验证,将有助于避免或延缓股骨头坏死的发展。目的:分析系统性红斑狼疮患者并发股骨头坏死的危险因素,构建系统性红斑狼疮患者并发股骨头坏死的列线图预测模型并进行验证。方法:回顾性分析2013年1月至2022年12月首次就诊于河南中医药大学第一附属医院的914例系统性红斑狼疮患者的病历资料,根据是否发生股骨头坏死分为发生股骨头坏死组(n=100)和未发生股骨头坏死组(n=814)。采用单因素、LASSO回归和多因素Logistic回归分析筛选和确定系统性红斑狼疮并发股骨头坏死的危险因素。同时将数据集按照7∶3的比例随机分为训练集和测试集,并基于多因素Logistic回归分析结果,构建系统性红斑狼疮并发股骨头坏死的列线图预测模型。同时,使用受试者工作特征曲线、Hosmer-Lemeshow校准曲线和决策曲线对列线图的性能进行评估。结果与结论:①股骨头坏死组与未发生股骨头坏死组患者在系统性红斑狼疮病程、系统性红斑狼疮疾病活动度评分、狼疮性肾炎、呼吸系统受累、胃肠道受累、干燥综合征、骨质疏松、抗核糖核蛋白抗体阳性、补体C3降低、环磷酰胺、吗替麦考酚酯、生物抑制剂、糖皮质激素最大日剂量、糖皮质激素冲击治疗方面差异有显著性意义(P<0.05);②采用LASSO回归分析方法筛选出10个与系统性红斑狼疮并发股骨头坏死风险相关的预测变量,将其纳入多因素Logistic回归分析,结果显示系统性红斑狼疮病程、呼吸系统受累、干燥综合征、骨质疏松、抗核糖核蛋白抗体阳性、环磷酰胺、吗替麦考酚酯、生物抑制剂、糖皮质激素最大日剂量是系统性红斑狼疮患者发生股骨头坏死的独立危险因素(P<0.05);③训练集中预测发生风险的受试者工作特征曲线下面积为0.802(95%CI=0.742-0.862),测试集预测发生股骨头坏死风险受试者工作特征曲线下面积为0.811(95%CI=0.745-0.876);Hosmer-Lemeshow校准曲线拟合度较好(训练集,P=0.447;验证集,P=0.870);决策曲线显示使用列线图预测模型预测系统性红斑狼疮患者发生股骨头坏死的风险是有益的;④月经异常为女性系统性红斑狼疮患者并发股骨头坏死的危险因素之一;⑤此次研究结果提示,系统性红斑狼疮并发股骨头坏死的危险因素是多因素的,同时建立了一个包含9个危险因素的列线图预测模型,可将其用于预测系统性红斑狼疮患者发生股骨头坏死的风险;此外,首次报道了月经异常为女性系统性红斑狼疮并发股骨头坏死的危险因素之一。 展开更多
关键词 系统性红斑狼疮 股骨头坏死 危险因素 列线图 预测模型 月经异常 LASSO回归 多因素Logistic回归
下载PDF
高龄产妇产褥期中重度疲乏风险预测模型的构建与应用研究
10
作者 刘萍 李晓敏 殷叶莲 《循证护理》 2025年第3期566-570,共5页
目的:分析高龄产妇产褥期中重度疲乏发生的危险因素,构建风险预测模型,并验证其预测效果。方法:采用便利抽样法,选取南京医科大学附属常州第二人民医院产科2020年1月—2021年12月收治的高龄产妇210例设为建模组,选取2022年1月—2023年7... 目的:分析高龄产妇产褥期中重度疲乏发生的危险因素,构建风险预测模型,并验证其预测效果。方法:采用便利抽样法,选取南京医科大学附属常州第二人民医院产科2020年1月—2021年12月收治的高龄产妇210例设为建模组,选取2022年1月—2023年7月收治的高龄产妇100例设为验证组,采用一般资料问卷、疲乏量表、匹兹堡睡眠质量指数、爱丁堡产后抑郁量表、育儿联盟量表、产后社会支持量表等对产妇实施测评,统计建模组中重度疲乏的发生情况,通过单因素分析、多因素Logistic回归分析筛选高龄产妇产褥期中重度疲乏发生的危险因素,根据回归分析结果构建风险预测模型,并验证其预测效果。结果:建模组中,中重度疲乏产妇共41例,多因素Logistic回归分析结果显示,高龄产妇产褥期中重度疲乏发生的危险因素有产次、分娩方式、婴儿每日哭闹频率≥7次、睡眠质量、产后抑郁、配偶育儿参与度、产后社会支持(P<0.05);根据回归分析结果构建风险预测模型,Hosmer⁃Lemeshow拟合优度检验显示,χ^(2)=1.028,P=0.362,差异无统计学意义(P>0.05);绘制模型的受试者工作特征(ROC)曲线下面积(AUC)为0.833[95%CI(0.758,0.908)],敏感度、特异度分别为82.7%、88.5%,约登指数为0.712;临床应用检验显示,模型预测准确率为91.00%,Kappa一致性系数为0.798,表明模型有较好的预测、外推能力。结论:根据回归分析预测法构建的高龄产妇产褥期中重度疲乏风险预测模型有较好的预测、外推能力,其应用能为临床护理提供参考与依据,进而实现对产妇产褥期疲乏的有效管理。 展开更多
关键词 高龄 经产妇 产褥期 疲乏 危险因素 预测模型 护理
下载PDF
肾部分切除术后近期术侧肾功能损失的危险因素及预测模型构建
11
作者 邓圆圆 吴升 向从明 《中国现代医学杂志》 2025年第1期62-67,共6页
目的分析肾部分切除术(PN)后近期术侧肾功能损失的危险因素,并以此构建预测模型进行验证。方法回顾性分析2015年1月-2023年12月江南大学附属医院收治的107例行PN治疗的患者的临床资料,根据患者术后近期术侧肾功能损失发生情况将其分为... 目的分析肾部分切除术(PN)后近期术侧肾功能损失的危险因素,并以此构建预测模型进行验证。方法回顾性分析2015年1月-2023年12月江南大学附属医院收治的107例行PN治疗的患者的临床资料,根据患者术后近期术侧肾功能损失发生情况将其分为损失组(27例)和无损失组(80例)。采用多因素逐步Logistic回归模型分析影响患者术后术侧肾功能损失的危险因素,并以此构建Nomogram列线图模型预测患者术后肾功能损失的发生风险;绘制受试者工作特征(ROC)曲线,分析该模型对患者术后肾功能损失的预测效能。结果损失组肿瘤最大径、R.E.N.A.L评分、热缺血占比、缺血时间>45 min占比均高于无损失组,肾体积保留率低于无损失组(P<0.05)。多因素逐步Logistic回归分析结果显示,R.E.N.A.L评分[OR=5.609(95%CI:2.710,11.606)]、缺血类型[OR=4.462(95%CI:1.978,10.064)]是PN患者术后近期术侧肾功能损失的危险因素(P<0.05);肾体积保留率[OR=0.285(95%CI:0.098,0.826)]是保护因素(P<0.05)。基于上述影响因素构建的列线图预测模型经Bootstrap法内部验证,结果显示,C-index指数为0.852(95%CI:0.783,0.964),预测患者肾功能损失的校正曲线趋近于理想曲线(P>0.05)。列线图模型预测患者肾功能损失的敏感性为88.90%(95%CI:0.791,0.984)、特异性为91.20%(95%CI:0.841,0.994)。结论基于影响因素构建的列线图预测模型可较好地评估患者PN术后近期术侧肾功能损失的发生风险。 展开更多
关键词 肾部分切除术 肾功能损失 影响因素 风险预测模型 列线图
下载PDF
脑卒中患者医院感染危险因素分析及列线图预测模型构建
12
作者 顾李琴 陈肖漪 +1 位作者 章艳菊 陈晓君 《江苏大学学报(医学版)》 2025年第1期56-61,共6页
目的:探讨脑卒中患者发生医院感染的危险因素,并构建医院感染风险预测模型。方法:选择2020年1月至2023年12月在南通大学附属医院神经内科和神经外科住院期间发生医院感染的300例脑卒中患者(感染组),另选择同期未发生医院感染的脑卒中患... 目的:探讨脑卒中患者发生医院感染的危险因素,并构建医院感染风险预测模型。方法:选择2020年1月至2023年12月在南通大学附属医院神经内科和神经外科住院期间发生医院感染的300例脑卒中患者(感染组),另选择同期未发生医院感染的脑卒中患者300例(对照组),分析医院感染及病原菌分布情况,比较两组临床特征,采用多因素Logistic回归分析脑卒中患者医院感染的危险因素,纳入R语言建立预测风险的列线图模型,并评估该模型的预测效果。结果:脑卒中患者医院感染部位以呼吸系统为主(62.67%,188/300),医院感染病原菌以革兰阴性菌为主(59.90%,121/202),其中多重耐药菌感染占34.16%(69/202);与对照组相比,感染组脑出血、糖尿病、高血压、冠心病、意识障碍、呼吸机辅助呼吸、深静脉置管、导尿管留置、预防性使用抗菌药物、体质量指数(body mass index,BMI)≥24 kg/m^(2)、住院时间≥14 d占比明显增高(P<0.05);多因素Logistic回归分析结果显示,卒中类型、高血压、糖尿病、BMI≥24 kg/m 2、意识障碍、呼吸机辅助呼吸、导尿管留置、预防性使用抗菌药物、住院时间≥14 d是脑卒中患者发生医院感染的独立危险因素(P<0.05)。基于回归结果构建列线图预测模型,ROC曲线下面积为0.983(95%CI:0.975~0.991),灵敏度为0.940,特异度为0.937,Hosmer-Lemeshow检验(χ^(2)=5.454,P=0.708)提示模型具有较好的拟合度和预测效能。结论:脑卒中患者发生医院感染的危险因素包括脑卒中类型、高血压和糖尿病等,基于此构建的列线图预测模型可较准确预测脑卒中患者发生医院感染的风险。 展开更多
关键词 脑卒中 医院感染 病原菌 危险因素 预测模型 列线图
下载PDF
构建股骨转子间骨折股骨近端防旋髓内钉内固定失效的风险预测模型
13
作者 涂泽松 徐大星 +4 位作者 罗洪斌 王宇胜 冯兴伦 彭仲华 杜绍龙 《中国组织工程研究》 CAS 北大核心 2025年第27期5845-5853,共9页
背景:股骨转子间骨折是主要的老年脆性骨折类型,股骨近端防旋髓内钉是首选手术方案,但术后内固定失效的相关因素尚存在争议。目的:通过术前评估患者影像学资料提出一种新的股骨转子间骨折“三柱”分类法,并分析其与术后内固定失效的交... 背景:股骨转子间骨折是主要的老年脆性骨折类型,股骨近端防旋髓内钉是首选手术方案,但术后内固定失效的相关因素尚存在争议。目的:通过术前评估患者影像学资料提出一种新的股骨转子间骨折“三柱”分类法,并分析其与术后内固定失效的交互关系,利用数字技术运算开发和验证风险预测模型,便于临床医生术前甄别并干预高风险患者。方法:选择2012年6月和2022年6月佛山市中医院三水医院收治的股骨转子间骨折患者,按照术后是否出现内固定失效结局,分为内固定失效组和内固定维持组。根据患者术前X射线片将股骨近端分为“三柱”:内侧柱、外侧柱及中柱,每柱均有不同的亚组分型。分析“三柱”的形态特征与股骨近端防旋髓内钉内固定术后复位失效的关系,通过先单因素后多因素logistics回归分析,筛选出引起内固定失效的独立风险因素,根据独立风险因素利用R语言软件构建风险预测模型。采用自助法重抽样1000次,使用受试者工作特征曲线下的面积、校准曲线、临床决策曲线评价模型的区分度、校准能力及临床应用价值。通过Youden指数确定预测模型的最佳风险分界值,据此将患者分为高、低风险组,根据模型风险预测能力的准确度来评价其稳定性和外延性。结果与结论:①利用“三柱”分型系统预测骨折术后内固定失效的4个独立风险因素,分别为内侧柱(小转子及股骨距粉碎性骨折)[优势比=5.385,95%CI(1.961,14.782),P=0.001]、中间柱(烟囱型)[优势比=2.893,95%CI(1.167,7.173),P=0.022]、外侧柱(外侧壁厚度<20.5 mm)[优势比=2.804,95%CI(1.078,7.297),P=0.035]及外侧柱(外侧壁骨折)[优势比=4.278,95%CI(1.670,10.959),P=0.012];②构建的风险预测模型表现出良好的区分度和准确度[受试者工作特征曲线下面积=0.852,95%CI(0.837,0.922)],校准曲线显示模型预测风险和实际发生风险有较好的一致性;③临床决策曲线提示风险阈值概率在0.2-0.82范围内时,模型具有较好的临床适用性;风险概率为28%是模型风险分层的最佳阈值,模型在不同风险组别患者的预测性能较好;④此次研究通过“三柱”分型系统构建预测模型计算股骨转子间骨折患者术后内固定失效的风险概率,此方法准确、简便,易于临床应用,可作为一种数字化工具指导临床个性化治疗。 展开更多
关键词 股骨转子间骨折 股骨近端防旋髓内钉 独立风险因素 内固定失效 分型系统 风险预测模型 骨科植入物
下载PDF
老年下肢骨折术后尿路感染的危险因素分析及列线图预测模型构建
14
作者 张爱东 曹雪霞 +1 位作者 陆海荣 李秀婷 《中国医刊》 2025年第1期48-52,共5页
目的分析老年下肢骨折术后尿路感染的独立危险因素,构建列线图预测模型并对其应用价值进行验证。方法回顾性选取2020年1月至2023年12月在河北医科大学第三医院行手术治疗的550例老年下肢骨折患者,根据术后是否发生尿路感染分为感染组(n=... 目的分析老年下肢骨折术后尿路感染的独立危险因素,构建列线图预测模型并对其应用价值进行验证。方法回顾性选取2020年1月至2023年12月在河北医科大学第三医院行手术治疗的550例老年下肢骨折患者,根据术后是否发生尿路感染分为感染组(n=60)与无感染组(n=490)。采用Logistic-Lasso回归分析筛选老年下肢骨折术后尿路感染的独立危险因素并构建列线图预测模型,使用受试者操作特征(ROC)曲线、校正曲线、临床决策曲线(DCA)验证该模型的价值。另选取2024年1—6月收治的113例老年下肢骨折手术患者作为外部验证样本进行外部验证。结果Logistic-Lasso回归分析显示,女性、糖尿病、低蛋白血症、手术时间、尿路结石、留置尿管时间是老年下肢骨折术后尿路感染的独立危险因素(P<0.05),据此构建列线图风险预测模型,该模型预测老年下肢骨折术后尿路感染的ROC曲线下面积(AUC)为0.809(95%CI 0.753~0.866),校准度为0.618,C-index为0.791,DCA验证显示其临床效用性较高。通过113例患者对该模型进行外部验证,结果显示AUC为0.769(95%CI 0.593~0.946),提示该模型在外部验证中仍具有较好的预测价值。结论女性、糖尿病、低蛋白血症、手术时间、尿路结石、留置尿管时间是老年下肢骨折术后尿路感染的独立危险因素,据此构建的列线图预测模型具有较好的预测价值,对早期发现老年下肢骨折术后尿路感染的高风险人群并制订针对性的围手术期管理措施具有一定指导意义。 展开更多
关键词 下肢骨折 老年人 尿路感染 危险因素 列线图预测模型
下载PDF
基于血常规炎性指标构建衰弱/衰弱前期发生风险列线图模型研究
15
作者 石小天 王珊 +4 位作者 杨华昱 杨一帆 李旭 窦国泽 马清 《中国全科医学》 CAS 北大核心 2025年第5期587-593,共7页
背景衰弱是一种常见的老年综合征,与不良临床结局密切相关。目前评估主要依赖各种量表,缺乏统一的金标准。慢性炎症作为衰弱的病理生理机制之一,血常规炎性指标简单易获得,关于血常规炎性指标和衰弱之间的相关研究较少。目的探讨体检老... 背景衰弱是一种常见的老年综合征,与不良临床结局密切相关。目前评估主要依赖各种量表,缺乏统一的金标准。慢性炎症作为衰弱的病理生理机制之一,血常规炎性指标简单易获得,关于血常规炎性指标和衰弱之间的相关研究较少。目的探讨体检老年人血常规炎性指标和衰弱的相关性,分析衰弱的影响因素并构建衰弱发生风险的预测模型。方法选取2020年8月—2022年9月于首都医科大学附属北京友谊医院医疗保健中心行健康体检的老年人。收集研究对象的一般资料、体检实验室检查数据,并采用FRAIL量表评估衰弱。采用单因素及多因素Logistic回归分析探讨衰弱的影响因素并建立列线图预测模型,采用Bootstrap进行模型内部验证。使用受试者工作特征(ROC)曲线、Hosmer-Lemeshow校准曲线和临床决策曲线分析(DCA)评价预测模型的区分度、校准度及预测模型的临床有效性。结果共纳入554例老年人,其中衰弱/衰弱前期213例(38.4%)。多因素Logistic回归分析结果显示,年龄校正的查尔森合并症指数(ACCI)(OR=1.42,95%CI=1.21~1.66)、简易营养筛查量表(MNA-SF)评分(OR=0.71,95%CI=0.61~0.83)、血红蛋白与红细胞体积分布宽度比值(HRR)(OR=0.44,95%CI=0.23~0.86)及多重用药(OR=0.54,95%CI=0.36~0.81)是老年人衰弱/衰弱前期的独立影响因素(P<0.05)。基于多因素Logistic回归分析中的影响因素构建衰弱预测模型,该模型预测老年人衰弱/衰弱前期的ROC曲线下面积(AUC)为0.719(95%CI=0.675~0.764),Bootstrap重抽样法进行内部验证后,列线图模型拟合度较好;Hosmer-Lemeshow校准曲线拟合度较好(P>0.05);DCA显示当患者的阈值概率为0.15~0.95时,使用列线图模型预测衰弱发生风险更有益。结论共病、多重用药、营养不良及HRR是老年人衰弱/衰弱前期的影响因素,构建的预测模型具有良好的区分度、一致性与临床实用性,可为衰弱/衰弱前期早期筛查提供指导。 展开更多
关键词 衰弱 炎性指标 危险因素 列线图 预测模型 LOGISTIC回归
下载PDF
机器学习预测肱骨近端骨折钢板内固定后继发性螺钉切出的风险
16
作者 徐大星 涂泽松 +2 位作者 纪木强 许伟鹏 牛维 《中国组织工程研究》 CAS 北大核心 2025年第15期3179-3187,共9页
背景:继发性螺钉切出关节面是肱骨近端骨折锁定钢板内固定术后的主要并发症之一,切出的螺钉会磨损关节盂和引起肩峰撞击,影响肩关节功能。因此,准确的风险预测有积极的临床意义。目的:通过机器学习方法筛选肱骨近端骨折钢板内固定后继... 背景:继发性螺钉切出关节面是肱骨近端骨折锁定钢板内固定术后的主要并发症之一,切出的螺钉会磨损关节盂和引起肩峰撞击,影响肩关节功能。因此,准确的风险预测有积极的临床意义。目的:通过机器学习方法筛选肱骨近端骨折钢板内固定后继发性螺钉切出的风险因素,开发并验证风险预测模型,便于临床医生早期甄别并干预高风险患者。方法:收集2013年6月至2022年6月接受锁定钢板内固定治疗的214例肱骨近端骨折患者的临床资料作为训练组建立模型,将同一时间段另一医院收治的同类患者61例纳入外部验证组。按照患者术后是否出现继发性螺钉切出,分为螺钉切出组和螺钉维持组。训练组利用随机森林、支持向量机、逻辑回归3种机器学习算法构建预测模型;采用递归特征消除法、10折交叉验证重抽样作为变量的筛选方法,并将3种模型准确度最高时纳入变量的交集作为与螺钉切出高度相关的可靠风险变量。通过R语言软件构建动态预测模型,以网页计算器形式展示,并对模型进行内、外部验证。模型内部检验采用Bootstrap法重抽样1000次,使用受试者工作特征曲线下面积、校准曲线、临床决策曲线评价模型的区分度、校准能力及临床应用价值。通过Youden指数确定预测模型的最佳风险分界值,据此将外部验证组患者分为高、低风险组,根据模型风险预测能力的准确度来评价其稳定性和外延性。结果与结论:①机器学习算法筛选出继发性螺钉切出高度相关的4个风险变量,分别为肱骨近端内侧柱皮质支撑、三角肌结节指数、骨折类型及术后复位情况;②构建的风险预测模型表现出良好的区分度和准确度[曲线下面积=0.874,95%置信区间(0.827,0.922)],校准曲线显示模型预测风险和实际发生风险有较好的一致性;③临床决策曲线提示风险阈值概率在0.1-0.75范围内时,模型具有较好的临床适用性;④风险概率为26%是模型风险分层的最佳阈值,外部验证组利用模型风险分层预测螺钉切出的总正确率为84%;⑤结果说明该风险预测模型准确度和外延性较好,可为指导临床治疗提供依据。 展开更多
关键词 肱骨近端骨折 继发性螺钉切出 机器学习 影响因素 风险预测模型
下载PDF
妊娠期糖尿病风险预测模型的外部验证研究
17
作者 陈姝宇 周英凤 +1 位作者 郭娜菲 李丽 《护理学杂志》 北大核心 2025年第1期46-50,共5页
目的对妊娠期糖尿病风险预测模型在孕妇人群中进行外部验证和比较,为筛选适宜的预测模型提供依据。方法采取前瞻性队列研究设计,选取788例建卡的孕妇作为研究对象,分别使用课题组前期经过系统评价遴选出的8个模型预测孕妇妊娠期糖尿病... 目的对妊娠期糖尿病风险预测模型在孕妇人群中进行外部验证和比较,为筛选适宜的预测模型提供依据。方法采取前瞻性队列研究设计,选取788例建卡的孕妇作为研究对象,分别使用课题组前期经过系统评价遴选出的8个模型预测孕妇妊娠期糖尿病发生风险。通过受试者工作特征曲线下面积、准确度等指标评价模型的预测性能,通过纳入的预测因子评价模型的临床适用性。结果788例孕妇中,妊娠期糖尿病发病率为10.2%,8个模型的受试者工作特征曲线下面积为0.54~0.67,准确度为0.10~0.90,阴性预测值为0.10~0.89,阳性预测值为0.10~0.96。其中,李金金模型为最佳模型,受试者工作特征曲线下面积为0.66(95%CI 0.60,0.72)、准确度为0.80(95%CI 0.77,0.83),纳入因子数量适宜且易获取,具有良好的临床适用性。结论针对中国孕妇人群,基于中国数据构建的模型性能表现较好,基于国外数据构建的模型性能表现较差。与其余7个模型相比,李金金模型在中国孕妇队列中的预测性能和临床适用性更具优势。 展开更多
关键词 孕妇 妊娠 血糖 妊娠期糖尿病 风险因素 预测模型 队列研究 外部验证
下载PDF
热射病患者发生急性肾损伤的危险因素分析及预测模型构建
18
作者 张萍 杨莎 +3 位作者 张琳 邓鹏 程涛 姚蓉 《西部医学》 2025年第1期75-79,共5页
目的探讨热射病(HS)患者发生急性肾损伤(AKI)的临床特征及危险因素,并进一步构建风险预测模型。方法选取四川大学华西医院、成都医学院第二附属医院、绵阳市中心医院等7家医院急诊科2022年7月1日—2022年9月30日收治的HS患者184例,根据... 目的探讨热射病(HS)患者发生急性肾损伤(AKI)的临床特征及危险因素,并进一步构建风险预测模型。方法选取四川大学华西医院、成都医学院第二附属医院、绵阳市中心医院等7家医院急诊科2022年7月1日—2022年9月30日收治的HS患者184例,根据住院期间是否发生AKI将患者分为AKI组和非AKI组,比较两组患者一般情况、就诊时症状、体征及实验室检查等指标,多因素Logistic回归分析筛选出HS患者发生AKI的独立危险因素,进一步建立AKI风险预测模型。结果最终纳入HS患者160例,其中AKI组70例,非AKI组90例,AKI发生率为44%。与非AKI组相比,AKI组患者合并横纹肌溶解、DIC比例更高,死亡率更高。多因素Logistic回归分析显示,入院时患者心率、收缩压、肌红蛋白、血小板计数是HS患者发生AKI的独立危险因素,基于上述指标构建预测模型,受试者工作曲线下面积(AUROC)为0.848(95%CI:0.789~0.907,P<0.05),高于序贯器官衰竭评价(SOFA)评分(AUROC)为0.790(95%CI:0.718~0.861,P<0.05)。结论本组HS患者AKI发生率44%,就诊时心率、收缩压、肌红蛋白和血小板计数是HS患者中发生AKI的独立危险因素,基于上述指标构建的模型可用于评估HS患者AKI风险。 展开更多
关键词 热射病 急性肾损伤 危险因素 预测模型
下载PDF
农地经营权抵押贷款信用风险影响因素及其衡量研究——基于CreditRisk+模型的估计 被引量:13
19
作者 吕德宏 张无坷 《华中农业大学学报(社会科学版)》 CSSCI 北大核心 2018年第4期137-147,173,共12页
基于1 173个贷款样本数据,运用Logistic回归分析农地经营权抵押贷款信用风险影响因素并预测违约概率,依据CreditRisk+模型,对农地经营权抵押贷款信用风险衡量进行研究,并进行了压力测试。研究表明,农地经营权抵押贷款信用风险主要受到... 基于1 173个贷款样本数据,运用Logistic回归分析农地经营权抵押贷款信用风险影响因素并预测违约概率,依据CreditRisk+模型,对农地经营权抵押贷款信用风险衡量进行研究,并进行了压力测试。研究表明,农地经营权抵押贷款信用风险主要受到抵押土地因素、保险与政策因素的影响;影响因素的风险程度具有次序性;贷款期限和农业生产周期不匹配是农地经营权抵押贷款面临的突出矛盾;土地经营权来源不同的贷款风险程度存在明显差异;农地经营权抵押贷款预期损失和非预期损失占VaR比例结构合理,极端情景出现时预期损失会有明显波动。提出应瞄准贷款对象、精确贷款条款和强化风险处置,促进农地经营权抵押贷款顺利开展。 展开更多
关键词 农地经营权抵押贷款 信用风险 影响因素 CREDITrisk+模型
下载PDF
中央性前置胎盘剖宫产术后失血性休克风险模型构建与验证
20
作者 吴芸 胡根吾 张雪华 《中国急救复苏与灾害医学杂志》 2025年第1期82-86,共5页
目的 探讨中央性前置胎盘剖宫产术后失血性休克的影响因素,并构建与验证术后发生失血性休克风险模型。方法 纳入2018年1月-2023年6月于淮安市第二人民医院接受中央性前置胎盘剖宫产术150例产妇临床资料,将产妇术后发生失血性休克的纳入... 目的 探讨中央性前置胎盘剖宫产术后失血性休克的影响因素,并构建与验证术后发生失血性休克风险模型。方法 纳入2018年1月-2023年6月于淮安市第二人民医院接受中央性前置胎盘剖宫产术150例产妇临床资料,将产妇术后发生失血性休克的纳入发生组,未发生失血性休克的产妇纳入未发生组。回顾性收集、分析产妇临床资料,采用Logistic回归分析法确定中央性前置胎盘剖宫产术后发生失血性休克的独立影响因素,利用确定的独立影响因素构建列线图预测模型,从C指数、受试者工作特征(ROC)曲线、校准曲线三个维度评判中央性前置胎盘剖宫产术后发生失血性休克的列线图模型效能。结果 150例中央性前置胎盘产妇在我院接受剖宫产术,发生失血性休克的产妇比例为8.67%,人数为13例,未发生失血性休克的产妇比例为91.33%,人数为137例。Logistic回归分析结果显示,流产大于一次、胎盘植入穿透浆膜层是中央性前置胎盘剖宫产术后失血性休克的危险因素(OR>1,P<0.05),无剖宫产史、胎盘附着后壁部位、术前无贫血是中央性前置胎盘剖宫产术后发生失血性休克保护因素(OR<1,P<0.05)。采用确定的独立影响因素绘制ROC曲线,曲线结果显示剖宫产史、流产次数、胎盘附着部位、胎盘植入程度、术前贫血的AUC值均>0.60,说明以上指标为预测中央性前置胎盘剖宫产术后失血性休克提供价值。利用以上独立影响因素建立列线图风险模型,危险因素分值相加所得数值即为中央性前置胎盘剖宫产术后失血性休克的概率,验证结果显示,校准曲线的C-index值为0.990,表明该列线图模型预测能效良好。结论 采用中央性前置胎盘剖宫产术后发生失血性休克的独立危险因素构建列线图预测模型,可直接预测中央性前置胎盘剖宫产术后发生失血性休克的概率。 展开更多
关键词 中央性前置胎盘 剖宫产 失血性休克 危险因素 模型构建
下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部