In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage hap...In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.展开更多
A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines an...A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant展开更多
Network security equipment is crucial to information systems, and a proper evaluation model can ensure the quality of network security equipment. However, there is only a few models of comprehensive models nowadays. A...Network security equipment is crucial to information systems, and a proper evaluation model can ensure the quality of network security equipment. However, there is only a few models of comprehensive models nowadays. An index system for network security equipment was established and a model based on attack tree with risk fusion was proposed to obtain the score of qualitative indices. The proposed model implements attack tree model and controlled interval and memory(CIM) model to solve the problem of quantifying qualitative indices, and thus improves the accuracy of the evaluation.展开更多
So many potential risks can be identifed for application of trenchless technology especially using microtunneling methods.Unexpected changes in ground conditions,such as encountering boulders,tree roots,ground water a...So many potential risks can be identifed for application of trenchless technology especially using microtunneling methods.Unexpected changes in ground conditions,such as encountering boulders,tree roots,ground water and man-made structures such as old foundations are the principal geotechnical risks,which affect the selection of an appropriate microtunnel boring machine.On the other hand,the performance of each microtunneling technique will differ while encountering such conditions.Hence,predicting the potential hazards provides a better safety and risk management plan.In this study,a couple of potentially hazardous situation,which are commonly associated with ground conditions,were identifed and investigated.A decision tree aid methodology was proposed based on geotechnical risk assessment for selection of proper microtunneling technique.Based on the approach the most appropriate microtunneling technique has the minimum risk level either before or after hazards mitigation measures.In order to check the effciency of the approach in practice,selection of microtunnel boring machine for Hamadan sewerage pipeline project was evaluated.Accordingly,an earth pressure balance(EPB)MTBM was selected for the project.展开更多
In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree wa...In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately.展开更多
Arboricultural research focusing on transport land use was lacking in Hong Kong.Some highway slopes were registered in the Systematic Identification of Maintenance Responsibility of Slopes in the Territory(SIMAR),abbr...Arboricultural research focusing on transport land use was lacking in Hong Kong.Some highway slopes were registered in the Systematic Identification of Maintenance Responsibility of Slopes in the Territory(SIMAR),abbreviated as SIMAR slopes.We aimed to analyze patterns in the structure and species composition of the tree stock along a highway in Hong Kong and examined how a slope registration system could help explain the characteristics of urban forests.The 53 slopes and 52 verges along San Tin Highway,Hong Kong were randomly selected.The trees on each slope and verge were collectively sampled as a tree stand.Six variables,namely tree abundance,species richness,maximum tree height,Shannon-Wiener diversity,Simpson's dominance,and Pielou's evenness were measured for each stand.In addition,a limited visual tree risk assessment was performed.The 7,209 trees in 23 species were recorded.Species richness was low,ranging from one to eight species per stand.SIMAR and non-SIMAR slopes were compared.SIMAR slopes had significantly higher species richness,diversity,evenness but lower dominance,with mean difference of 1.41 species,0.17,0.17 and-0.28respectively.SIMAR slopes were associated with lower tree risk rating.When training regression models,boosting as an ensemble method arbitrarily raised the explanatory power and the predictive accuracy of some models.Slope height,length,angle and area could be significant predictors of the biodiversity-related variables.Future research can sample more habitat characteristics related to the structure and species composition of slopes and verges which were important components of urban forestry.展开更多
Hazard and risk assessment procedures of different types of rockfall were analyzed to compare their outcomes when they are applied to the same case study.Although numerous methodologies are available in literature,roc...Hazard and risk assessment procedures of different types of rockfall were analyzed to compare their outcomes when they are applied to the same case study.Although numerous methodologies are available in literature,rockfall hazard and risk analyses are often limited to standard estimations,affected by a margin of uncertainty,especially when relevant engineering projects are about to be realized.Based on the design purpose,different types of approaches can be chosen among the qualitative and quantitative ones available in literature,which allow different levels of analysis.One of the main criticisms related to rockfall events is the risk affecting linear structures,such as road or railways,due both to their strategic relevance for trade and communications and to the great entity of the exposed value(traffic units)traveling along them.In this perspective,a comparison between the qualitative method known as Evolving Rockfall Hazard Assessment(EHRA),the semi-quantitative modified Rockfall Hazard Rating System(RHRS)and the quantitative Rockfall Risk Management(RoMa)approach is herein commented according to a practical application to a case study.It is the case of the rockfall threat along slopes crossed by a strategic road connecting two of the most known spots of eastern Sicily(Italy),at the Taormina tourist complex.Data were retrieved from both recent literature and technical surveys on field.Achieved results highlight how the approaches are affected by a different level of detail and uncertainty,arising also by some necessary assumption that must be taken into account,especially when mitigation measures or territory planning have to be designed.Achieved results can be also taken into account for similar studies worldwide,in order to choose the most suitable procedure based on the design purpose.This is indeed crucial in the perspective of the optimization of time and economic resources in the territorial planning practice.展开更多
The power transformer is the key equipment of transforming voltage and exchanging power in the power system.It's safe and reliable operation directly influences the safe level of the power system.To study the risk...The power transformer is the key equipment of transforming voltage and exchanging power in the power system.It's safe and reliable operation directly influences the safe level of the power system.To study the risk assessment of power transformer which is very significant to improve the reliability of the power system,a fuzzy comprehensive risk assessment model of power transformer based on Borda number theory is proposed in this paper.At first,the fault types and risk factors of the power transformer are analyzed.Secondly,the basic framework of the fuzzy comprehensive evaluation is applied to quantify the risk factors.And then,Borda number theory is employed to analyze influence degree and occurrence probability of power transformer.At last,the various risk factors impact index and fuzzy comprehensive evaluation index of power transformer can be easily obtained.Applying this model,the relative importance degree of the risk factors can be horizontally compared according to the numerical index,the engineering staff can directly get the parameters of the transformer risk level and get a good description of the visual expression through using 5 score and similar visual language.展开更多
In this work, we have focused on the risks emanating </span><span style="white-space:normal;font-family:"">from</span><span style="white-space:normal;font-family:"&qu...In this work, we have focused on the risks emanating </span><span style="white-space:normal;font-family:"">from</span><span style="white-space:normal;font-family:""> the steam production process in a thermal production department with a view to reducing the occurrence of unwanted events. The practical aspect of this study is to ensure the well-being of production actors and the surrounding population.</span><span style="white-space:normal;font-family:""> </span><span style="white-space:normal;font-family:"">Subsequently, we opted for fault tree analysis and HAZOP, which are tools for studying the probabilities of occurrence of unwanted events in the operation of industrial thermal installations.</span><span style="white-space:normal;font-family:""> </span><span style="white-space:normal;font-family:"">In addition, in the process of steam production, it emerges that pressure and temperature remain the most important parameters to monitor in order to reduce the risks associated with chemicals but especially with steam circuits.展开更多
基金Supported by National Science and Technology Pillar Program in the Twelfth Five-Year Plan (No. 2011BAK06B02)National Basic Research Program of China ("973" Program, No. 2012CB026000)
文摘In petrochemical plant, the in-operation repairing is usually a repairing strategy with pressured inoperation repairing for avoiding huge economic losses caused by unplanned shutdown when some slight local leakage happens in pipes. This paper studies the effects of repairing strategies on the failure probability of the pipe systems in process industries based on the time-average fault tree approach, especially the in-operation repairing strategies including pressured in-operation repairing activities. The fault tree model can predict the effect of different repairing plans on the pipe failure probability, which is significant to the optimization of the repairing plans. At first pipes are distinguished into four states in this model, i.e., successive state, flaw state, leakage state and failure state. Then the fault tree approach, which is usually applied in the studies of dynamic equipment, is adopted to model the pipe failure. Moreover, the effect of pressured in-operation repairing is also considered in the model. In addition, this paper proposes a series of time-average parameters of the fault tree model, all of which are used to calculate node parameters of the fault tree model. At last, a practical case is calculated based on the fault tree model in a repairing activity of pipe thinning.
文摘A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant
基金The Research of Key Technology and Application of Information Security Certification Project(No.2016YFF0204001)
文摘Network security equipment is crucial to information systems, and a proper evaluation model can ensure the quality of network security equipment. However, there is only a few models of comprehensive models nowadays. An index system for network security equipment was established and a model based on attack tree with risk fusion was proposed to obtain the score of qualitative indices. The proposed model implements attack tree model and controlled interval and memory(CIM) model to solve the problem of quantifying qualitative indices, and thus improves the accuracy of the evaluation.
文摘So many potential risks can be identifed for application of trenchless technology especially using microtunneling methods.Unexpected changes in ground conditions,such as encountering boulders,tree roots,ground water and man-made structures such as old foundations are the principal geotechnical risks,which affect the selection of an appropriate microtunnel boring machine.On the other hand,the performance of each microtunneling technique will differ while encountering such conditions.Hence,predicting the potential hazards provides a better safety and risk management plan.In this study,a couple of potentially hazardous situation,which are commonly associated with ground conditions,were identifed and investigated.A decision tree aid methodology was proposed based on geotechnical risk assessment for selection of proper microtunneling technique.Based on the approach the most appropriate microtunneling technique has the minimum risk level either before or after hazards mitigation measures.In order to check the effciency of the approach in practice,selection of microtunnel boring machine for Hamadan sewerage pipeline project was evaluated.Accordingly,an earth pressure balance(EPB)MTBM was selected for the project.
基金National Natural Science Foundations of China(Nos.61164009,61463021)the Science Foundation of Education Commission of Jiangxi Province,China(No.GJJ14420)+1 种基金the Young Scientists Object Program of Jiangxi Province,China(No.20144BCB23037)the Graduate Innovation Foundation of Jiangxi Province,China(No.YC2014-S364)
文摘In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately.
基金funded by the Highways Department of the Hong Kong Special Administrative Region Government。
文摘Arboricultural research focusing on transport land use was lacking in Hong Kong.Some highway slopes were registered in the Systematic Identification of Maintenance Responsibility of Slopes in the Territory(SIMAR),abbreviated as SIMAR slopes.We aimed to analyze patterns in the structure and species composition of the tree stock along a highway in Hong Kong and examined how a slope registration system could help explain the characteristics of urban forests.The 53 slopes and 52 verges along San Tin Highway,Hong Kong were randomly selected.The trees on each slope and verge were collectively sampled as a tree stand.Six variables,namely tree abundance,species richness,maximum tree height,Shannon-Wiener diversity,Simpson's dominance,and Pielou's evenness were measured for each stand.In addition,a limited visual tree risk assessment was performed.The 7,209 trees in 23 species were recorded.Species richness was low,ranging from one to eight species per stand.SIMAR and non-SIMAR slopes were compared.SIMAR slopes had significantly higher species richness,diversity,evenness but lower dominance,with mean difference of 1.41 species,0.17,0.17 and-0.28respectively.SIMAR slopes were associated with lower tree risk rating.When training regression models,boosting as an ensemble method arbitrarily raised the explanatory power and the predictive accuracy of some models.Slope height,length,angle and area could be significant predictors of the biodiversity-related variables.Future research can sample more habitat characteristics related to the structure and species composition of slopes and verges which were important components of urban forestry.
文摘Hazard and risk assessment procedures of different types of rockfall were analyzed to compare their outcomes when they are applied to the same case study.Although numerous methodologies are available in literature,rockfall hazard and risk analyses are often limited to standard estimations,affected by a margin of uncertainty,especially when relevant engineering projects are about to be realized.Based on the design purpose,different types of approaches can be chosen among the qualitative and quantitative ones available in literature,which allow different levels of analysis.One of the main criticisms related to rockfall events is the risk affecting linear structures,such as road or railways,due both to their strategic relevance for trade and communications and to the great entity of the exposed value(traffic units)traveling along them.In this perspective,a comparison between the qualitative method known as Evolving Rockfall Hazard Assessment(EHRA),the semi-quantitative modified Rockfall Hazard Rating System(RHRS)and the quantitative Rockfall Risk Management(RoMa)approach is herein commented according to a practical application to a case study.It is the case of the rockfall threat along slopes crossed by a strategic road connecting two of the most known spots of eastern Sicily(Italy),at the Taormina tourist complex.Data were retrieved from both recent literature and technical surveys on field.Achieved results highlight how the approaches are affected by a different level of detail and uncertainty,arising also by some necessary assumption that must be taken into account,especially when mitigation measures or territory planning have to be designed.Achieved results can be also taken into account for similar studies worldwide,in order to choose the most suitable procedure based on the design purpose.This is indeed crucial in the perspective of the optimization of time and economic resources in the territorial planning practice.
基金Project Supported by National Natural Science Foundation of China (50425722), Natural Science Foundation of CQ CSTC (Chongqing Science and Technology Commission) (2008BA3026).
文摘The power transformer is the key equipment of transforming voltage and exchanging power in the power system.It's safe and reliable operation directly influences the safe level of the power system.To study the risk assessment of power transformer which is very significant to improve the reliability of the power system,a fuzzy comprehensive risk assessment model of power transformer based on Borda number theory is proposed in this paper.At first,the fault types and risk factors of the power transformer are analyzed.Secondly,the basic framework of the fuzzy comprehensive evaluation is applied to quantify the risk factors.And then,Borda number theory is employed to analyze influence degree and occurrence probability of power transformer.At last,the various risk factors impact index and fuzzy comprehensive evaluation index of power transformer can be easily obtained.Applying this model,the relative importance degree of the risk factors can be horizontally compared according to the numerical index,the engineering staff can directly get the parameters of the transformer risk level and get a good description of the visual expression through using 5 score and similar visual language.
文摘In this work, we have focused on the risks emanating </span><span style="white-space:normal;font-family:"">from</span><span style="white-space:normal;font-family:""> the steam production process in a thermal production department with a view to reducing the occurrence of unwanted events. The practical aspect of this study is to ensure the well-being of production actors and the surrounding population.</span><span style="white-space:normal;font-family:""> </span><span style="white-space:normal;font-family:"">Subsequently, we opted for fault tree analysis and HAZOP, which are tools for studying the probabilities of occurrence of unwanted events in the operation of industrial thermal installations.</span><span style="white-space:normal;font-family:""> </span><span style="white-space:normal;font-family:"">In addition, in the process of steam production, it emerges that pressure and temperature remain the most important parameters to monitor in order to reduce the risks associated with chemicals but especially with steam circuits.