Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. ...Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. LEACH (Low-Energy Adaptive Clustering Hierarchy) is one of the most widely cited clustering solutions due to its simplicity and effectiveness. LEACH has several parameters that can be tuned to get better performance. Percentage of cluster heads is one such important parameter which affects the network lifetime significantly. At present it is hard to find the optimum value for the percentage of cluster head parameter due to the absence of a complete mathematical model on LEACH. A complete mathematical model on LEACH can be used to tune other LEACH parameters in order to get better performance. In this paper, we formulate a new and complete mathematical model on LEACH. From this new mathematical model, we compute the value for the optimal percentage of cluster heads in order to increase the network lifetime. Simulation results verify both the correctness of our mathematical model and the effectiveness of computing the optimal percentage of cluster heads to increase the network lifetime.展开更多
In the world, most of the successes are results of longterm efforts. The reward of success is extremely high, but before that, a long-term investment process is required. People who are “myopic” only value short-ter...In the world, most of the successes are results of longterm efforts. The reward of success is extremely high, but before that, a long-term investment process is required. People who are “myopic” only value short-term rewards and are unwilling to make early-stage investments, so they hardly get the ultimate success and the corresponding high rewards. Similarly, for a reinforcement learning(RL) model with long-delay rewards, the discount rate determines the strength of agent’s “farsightedness”.In order to enable the trained agent to make a chain of correct choices and succeed finally, the feasible region of the discount rate is obtained through mathematical derivation in this paper firstly. It satisfies the “farsightedness” requirement of agent. Afterwards, in order to avoid the complicated problem of solving implicit equations in the process of choosing feasible solutions,a simple method is explored and verified by theoreti cal demonstration and mathematical experiments. Then, a series of RL experiments are designed and implemented to verify the validity of theory. Finally, the model is extended from the finite process to the infinite process. The validity of the extended model is verified by theories and experiments. The whole research not only reveals the significance of the discount rate, but also provides a theoretical basis as well as a practical method for the choice of discount rate in future researches.展开更多
This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical ...This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical view for a fault tolerant software management system is put forward, and an approach that consists of system transient performance analysis is adopted. A quantitative approach for software reliability analysis is given. The results show its usefulness for the design and evaluation of the early-stage software reliability modeling when failure data is not available.展开更多
文摘Network lifetime is one of the important metrics that indicate the performance of a sensor network. Different techniques are used to elongate network lifetime. Among them, clustering is one of the popular techniques. LEACH (Low-Energy Adaptive Clustering Hierarchy) is one of the most widely cited clustering solutions due to its simplicity and effectiveness. LEACH has several parameters that can be tuned to get better performance. Percentage of cluster heads is one such important parameter which affects the network lifetime significantly. At present it is hard to find the optimum value for the percentage of cluster head parameter due to the absence of a complete mathematical model on LEACH. A complete mathematical model on LEACH can be used to tune other LEACH parameters in order to get better performance. In this paper, we formulate a new and complete mathematical model on LEACH. From this new mathematical model, we compute the value for the optimal percentage of cluster heads in order to increase the network lifetime. Simulation results verify both the correctness of our mathematical model and the effectiveness of computing the optimal percentage of cluster heads to increase the network lifetime.
基金supported by the National Natural Science Foundation of China (717712167170120972001214)。
文摘In the world, most of the successes are results of longterm efforts. The reward of success is extremely high, but before that, a long-term investment process is required. People who are “myopic” only value short-term rewards and are unwilling to make early-stage investments, so they hardly get the ultimate success and the corresponding high rewards. Similarly, for a reinforcement learning(RL) model with long-delay rewards, the discount rate determines the strength of agent’s “farsightedness”.In order to enable the trained agent to make a chain of correct choices and succeed finally, the feasible region of the discount rate is obtained through mathematical derivation in this paper firstly. It satisfies the “farsightedness” requirement of agent. Afterwards, in order to avoid the complicated problem of solving implicit equations in the process of choosing feasible solutions,a simple method is explored and verified by theoreti cal demonstration and mathematical experiments. Then, a series of RL experiments are designed and implemented to verify the validity of theory. Finally, the model is extended from the finite process to the infinite process. The validity of the extended model is verified by theories and experiments. The whole research not only reveals the significance of the discount rate, but also provides a theoretical basis as well as a practical method for the choice of discount rate in future researches.
基金This work was supported in part by the Ph.D.Programs Foundation of Ministry of Education of China under
文摘This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical view for a fault tolerant software management system is put forward, and an approach that consists of system transient performance analysis is adopted. A quantitative approach for software reliability analysis is given. The results show its usefulness for the design and evaluation of the early-stage software reliability modeling when failure data is not available.