期刊文献+
共找到15,201篇文章
< 1 2 250 >
每页显示 20 50 100
Cloud-Edge Collaborative Federated GAN Based Data Processing for IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch
1
作者 Zhan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第7期973-994,共22页
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial... The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time. 展开更多
关键词 IOT federated learning generative adversarial network data processing multi-flowintegration energy aggregation dispatch
下载PDF
A PI+R Control Scheme Based on Multi-Agent Systems for Economic Dispatch in Isolated BESSs
2
作者 Yalin Zhang Zhongxin Liu Zengqiang Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2154-2165,共12页
Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an incre... Battery energy storage systems(BESSs)are widely used in smart grids.However,power consumed by inner impedance and the capacity degradation of each battery unit become particularly severe,which has resulted in an increase in operating costs.The general economic dispatch(ED)algorithm based on marginal cost(MC)consensus is usually a proportional(P)controller,which encounters the defects of slow convergence speed and low control accuracy.In order to solve the distributed ED problem of the isolated BESS network with excellent dynamic and steady-state performance,we attempt to design a proportional integral(PI)controller with a reset mechanism(PI+R)to asymptotically promote MC consensus and total power mismatch towards 0 in this paper.To be frank,the integral term in the PI controller is reset to 0 at an appropriate time when the proportional term undergoes a zero crossing,which accelerates convergence,improves control accuracy,and avoids overshoot.The eigenvalues of the system under a PI+R controller is well analyzed,ensuring the regularity of the system and enabling the reset mechanism.To ensure supply and demand balance within the isolated BESSs,a centralized reset mechanism is introduced,so that the controller is distributed in a flow set and centralized in a jump set.To cope with Zeno behavior and input delay,a dwell time that the system resides in a flow set is given.Based on this,the system with input delays can be reduced to a time-delay free system.Considering the capacity limitation of the battery,a modified MC scheme with PI+R controller is designed.The correctness of the designed scheme is verified through relevant simulations. 展开更多
关键词 Battery energy storage system(BESS) distributed control economic dispatch multi-agent system reset control
下载PDF
Optimization dispatching strategy for an energy storage system considering its unused capacity sharing
3
作者 Hejun Yang Zhaochen Yang +2 位作者 Siyang Liu Dabo Zhang Yun Yu 《Global Energy Interconnection》 EI CSCD 2024年第5期590-602,共13页
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small... In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving. 展开更多
关键词 Renewable energy Energy storage system Sharing energy storage Power system dispatching Peak shaving
下载PDF
Energy Economic Dispatch for Photovoltaic-Storage via Distributed Event-Triggered Surplus Algorithm
4
作者 Kaicheng Liu Chen Liang +2 位作者 Naiyue Wu Xiaoyang Dong Hui Yu 《Energy Engineering》 EI 2024年第9期2621-2637,共17页
This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy rol... This paper presents a novel approach to economic dispatch in smart grids equipped with diverse energy devices.This method integrates features including photovoltaic(PV)systems,energy storage coupling,varied energy roles,and energy supply and demand dynamics.The systemmodel is developed by considering energy devices as versatile units capable of fulfilling various functionalities and playing multiple roles simultaneously.To strike a balance between optimality and feasibility,renewable energy resources are modeled with considerations for forecasting errors,Gaussian distribution,and penalty factors.Furthermore,this study introduces a distributed event-triggered surplus algorithm designed to address the economic dispatch problem by minimizing production costs.Rooted in surplus theory and finite time projection,the algorithm effectively rectifies network imbalances caused by directed graphs and addresses local inequality constraints.The algorithm greatly reduces the communication burden through event triggering mechanism.Finally,both theoretical proofs and numerical simulations verify the convergence and event-triggered nature of the algorithm. 展开更多
关键词 Fully distributed algorithm economic dispatch directed graph renewable energy resource
下载PDF
Collaborative robust dispatch of electricity and carbon under carbon allowance trading market
5
作者 Songyu Wu Xiaoyan Qi +4 位作者 Xiang Li Xuanyu Liu Bolin Tong Feiyu Zhang Zhong Zhang 《Global Energy Interconnection》 EI CSCD 2024年第4期391-401,共11页
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy... The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies. 展开更多
关键词 Asynchronous coupling mechanism Collaborative robust optimization Carbon price uncertainty Carbon capture power plant Low carbon dispatch
下载PDF
Flexible Job Shop Composite Dispatching Rule Mining Approach Based on an Improved Genetic Programming Algorithm
6
作者 Xixing Li Qingqing Zhao +4 位作者 Hongtao Tang Xing Guo Mengzhen Zhuang Yibing Li Xi Vincent Wang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1390-1408,共19页
To obtain a suitable scheduling scheme in an effective time range,the minimum completion time is taken as the objective of Flexible Job Shop scheduling Problems(FJSP)with different scales,and Composite Dispatching Rul... To obtain a suitable scheduling scheme in an effective time range,the minimum completion time is taken as the objective of Flexible Job Shop scheduling Problems(FJSP)with different scales,and Composite Dispatching Rules(CDRs)are applied to generate feasible solutions.Firstly,the binary tree coding method is adopted,and the constructed function set is normalized.Secondly,a CDR mining approach based on an Improved Genetic Programming Algorithm(IGPA)is designed.Two population initialization methods are introduced to enrich the initial population,and a superior and inferior population separation strategy is designed to improve the global search ability of the algorithm.At the same time,two individual mutation methods are introduced to improve the algorithm’s local search ability,to achieve the balance between global search and local search.In addition,the effectiveness of the IGPA and the superiority of CDRs are verified through comparative analysis.Finally,Deep Reinforcement Learning(DRL)is employed to solve the FJSP by incorporating the CDRs as the action set,the selection times are counted to further verify the superiority of CDRs. 展开更多
关键词 flexible job shop scheduling composite dispatching rule improved genetic programming algorithm deep reinforcement learning
原文传递
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
7
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Wind farm active power dispatching algorithm based on Grey Incidence 被引量:2
8
作者 Binbin Zhang Mengxin Jia +2 位作者 Chaobo Chen Kun Wang Jichao Li 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期175-183,共9页
This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-sto... This study proposes a wind farm active power dispatching(WFAPD) algorithm based on the grey incidence method, which does not rely on an accurate mathematical model of wind turbines. Based on the wind turbine start-stop data at different wind speeds, the weighting coefficients, which are the participation degrees of a variable speed system and a variable pitch system in power regulation, are obtained using the grey incidence method. The incidence coefficient curve is fitted by the B-spline function at a full range of wind speeds, and the power regulation capacity of all wind turbines is obtained. Finally, the WFAPD algorithm, which is based on the regulating capacity of each wind turbine, is compared with the wind speed weighting power dispatching(WSWPD) algorithm in MATLAB. The simulation results show that the active power fluctuation of the wind farm is smaller, the rotating speed of wind turbines is smoother, and the fatigue load of highspeed turbines is effectively reduced. 展开更多
关键词 Wind farm Active power dispatching Grey incidence B-spline function
下载PDF
A low-carbon economic dispatch model for electricity market with wind power based on improved ant-lion optimisation algorithm 被引量:2
9
作者 Renwu Yan Yihan Lin +1 位作者 Ning Yu Yi Wu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期29-39,共11页
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri... Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases. 展开更多
关键词 ant-lion optimisation algorithm carbon trading Levi flight low-carbon economic dispatch wind power market
下载PDF
Mechanical Dispatch Reliability Prediction for Civil Aircraft Considering Operational Parameters 被引量:1
10
作者 Yunwen Feng Zhicen Song Cheng Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1925-1942,共18页
To effectively predict the mechanical dispatch reliability(MDR),the artificial neural networks method combined with aircraft operation health status parameters is proposed,which introduces the real civil aircraft oper... To effectively predict the mechanical dispatch reliability(MDR),the artificial neural networks method combined with aircraft operation health status parameters is proposed,which introduces the real civil aircraft operation data for verification,to improve the modeling precision and computing efficiency.Grey relational analysis can identify the degree of correlation between aircraft system health status(such as the unscheduled maintenance event,unit report event,and services number)and dispatch release and screen out themost closely related systems to determine the set of input parameters required for the prediction model.The artificial neural network using radial basis function(RBF)as a kernel function,has the best applicability in the prediction of multidimensional,small sample problems.Health status parameters of related systems are used as the input to predict the changing trend ofMDR,under the artificial neural network modeling framework.The case study collects real operation data for a certain civil aircraft over the past five years to validate the performance of the model which meets the requirements of the application.The results show that the prediction quadratic error Ep of the model reaches 6.9×10−8.That is to say,in the existing operating environment,the prediction of the number of delay&cancel events per month can be less than once.The accuracy of RBF ANN,BP ANN and GA-BP ANN are compared further,and the results show that RBF ANN has better adaptability to such multidimensional small sample problems.The efforts of this paper provide a highly efficientmethod for theMDR prediction through aircraft system health state parameters,which is a promising model to enhance the prediction and controllability of the dispatch release,providing support for the construction of the civil aircraft operation system. 展开更多
关键词 Mechanical dispatch reliability GRA-RBF civil aircraft artificial neural network
下载PDF
Key technologies and applications of intelligent dispatching command for high-speed railway in China 被引量:1
11
作者 Shuxin Ding Tao Zhang +2 位作者 Kai Sheng Yuanyuan Chen Zhiming Yuan 《Railway Sciences》 2023年第3期336-346,共11页
Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new... Purpose–The intelligent Central Traffic Control(CTC)system plays a vital role in establishing an intelligent high-speed railway(HSR)system.As the core of HSR transportation command,the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching.This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.Design/methodology/approach–This paper first briefly introduces the functions and configuration of the intelligent CTC system.Some new servers,terminals and interfaces are introduced,which are plan adjustment server/terminal,interface for automatic train operation(ATO),interface for Dynamic Monitoring System of Train Control Equipment(DMS),interface for Power Supervisory Control and Data Acquisition(PSCADA),interface for Disaster Monitoring,etc.Findings–The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans,safety control of train routes and commands,traffic information data platform,integrated simulation of traffic dispatching and ATO function.These technologies have been applied in the Beijing-Zhangjiakou HSR,which commenced operations at the end of 2019.Implementing these key intelligent functions has improved the train dispatching command capacity,ensured the safe operation of intelligent HSR,reduced the labor intensity of dispatching operators and enhanced the intelligence level of China’s dispatching system.Originality/value–This paper provides further challenges and research directions for the intelligent dispatching command of HSR.To achieve the objectives,new measures need to be conducted,including the development of advanced technologies for intelligent dispatching command,coping with new requirements with the development of China’s railway signaling system,the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods. 展开更多
关键词 High-speed railway Intelligent dispatching command Intelligent centralized traffic control Key technologies and application
下载PDF
Optimal dispatch approach for rural multi-energy supply systems considering virtual energy storage
12
作者 Yanze Xu Yunfei Mu +3 位作者 Haijie Qi Hairun Li Peng Yu Shumin Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期675-688,共14页
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys... In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS. 展开更多
关键词 Virtual energy storage Rural multi-energy supply system Multi-energy coupling Optimal dispatch
下载PDF
Construction and application of knowledge graph for grid dispatch fault handling based on pre-trained model
13
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Jie Zhang Di Wu 《Global Energy Interconnection》 EI CSCD 2023年第4期493-504,共12页
With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power... With the construction of new power systems,the power grid has become extremely large,with an increasing proportion of new energy and AC/DC hybrid connections.The dynamic characteristics and fault patterns of the power grid are complex;additionally,power grid control is difficult,operation risks are high,and the task of fault handling is arduous.Traditional power-grid fault handling relies primarily on human experience.The difference in and lack of knowledge reserve of control personnel restrict the accuracy and timeliness of fault handling.Therefore,this mode of operation is no longer suitable for the requirements of new systems.Based on the multi-source heterogeneous data of power grid dispatch,this paper proposes a joint entity–relationship extraction method for power-grid dispatch fault processing based on a pre-trained model,constructs a knowledge graph of power-grid dispatch fault processing and designs,and develops a fault-processing auxiliary decision-making system based on the knowledge graph.It was applied to study a provincial dispatch control center,and it effectively improved the accident processing ability and intelligent level of accident management and control of the power grid. 展开更多
关键词 Power-grid dispatch fault handling Knowledge graph Pre-trained model Auxiliary decision-making
下载PDF
Finite-time economic model predictive control for optimal load dispatch and frequency regulation in interconnected power systems
14
作者 Yubin Jia Tengjun Zuo +3 位作者 Yaran Li Wenjun Bi Lei Xue Chaojie Li 《Global Energy Interconnection》 EI CSCD 2023年第3期355-362,共8页
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys... This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm. 展开更多
关键词 Economic model predictive control Finite-time convergence Optimal load dispatch Frequency stability
下载PDF
Combined Economic and Emission Power Dispatch Control Using Substantial Augmented Transformative Algorithm
15
作者 T.R.Manikandan Venkatesan Thangavelu 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期431-447,共17页
The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,the... The purpose of the Combined Economic Emission Dispatch(CEED)of electric power is to offer the most exceptional schedule for production units,which must run with both low fuel costs and emission levels concurrently,thereby meeting the lack of system equality and inequality constraints.Economic and emissions dispatching has become a primary and significant concern in power system networks.Consequences of using non-renewable fuels as input to exhaust power systems with toxic gas emissions and depleted resources for future generations.The optimal power allocation to generators serves as a solution to this problem.Emission dispatch reduces emissions while ignoring economic considerations.A collective strategy known as Combined Economic and Emission Dispatch is utilized to resolve the above-mentioned problems and investigate the trade-off relationship between fuel cost and emissions.Consequently,this work manages the Substantial Augmented Transformative Algorithm(SATA)to take care of the Combined Economic Emission Dispatch Problem(CEEDP)of warm units while fulfilling imperatives,for example,confines on generator limit,diminish the fuel cost,lessen the emission and decrease the force misfortune.SATA is a stochastic streamlining process that relies upon the development and knowledge of swarms.The goal is to minimize the total fuel cost of fossil-based thermal power generation units that generate and cause environmental pollution.The algorithm searches for solutions in the search space from the smallest to the largest in the case of forwarding search.The simulation of the proposed system is developed using MATLAB Simulink software.Simulation results show the effectiveness and practicability of this method in terms of economic and emission dispatching issues.The performance of the proposed system is compared with existing Artificial Bee Colony-Particle Swarm Optimization(ABC-PSO),Simulated Annealing(SA),and Differential Evolution(DE)methods.The fuel cost and gas emission of the proposed system are 128904$/hr and 138094.4652$/hr. 展开更多
关键词 Economic emission dispatch fuel cost substantial augmented transformative algorithm
下载PDF
Modeling of Combined Economic and Emission Dispatch Using Improved Sand Cat Optimization Algorithm
16
作者 Fadwa Alrowais Jaber S.Alzahrani +2 位作者 Radwa Marzouk Abdullah Mohamed Gouse Pasha Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第6期6145-6160,共16页
Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid... Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid falling in local optimal,particularly when handling nonlinear and complex systems.Metaheuristics have recently received considerable attention due to their enhanced capacity to prevent local optimal solutions in addressing all the optimization problems as a black box.Therefore,this paper focuses on the design of an improved sand cat optimization algorithm based CEED(ISCOA-CEED)technique.The ISCOA-CEED technique majorly concen-trates on reducing fuel costs and the emission of generation units.Moreover,the presented ISCOA-CEED technique transforms the equality constraints of the CEED issue into inequality constraints.Besides,the improved sand cat optimization algorithm(ISCOA)is derived from the integration of tra-ditional SCOA with the Levy Flight(LF)concept.At last,the ISCOA-CEED technique is applied to solve a series of 6 and 11 generators in the CEED issue.The experimental validation of the ISCOA-CEED technique ensured the enhanced performance of the presented ISCOA-CEED technique over other recent approaches. 展开更多
关键词 Economic and emission dispatch multi-objective optimization metaheuristics fuel cost minimization sand cat optimization
下载PDF
Black Widow Optimization for Multi Area Economic Emission Dispatch
17
作者 G.Girishkumar S.Ganesan +1 位作者 N.Jayakumar S.Subramanian 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期609-625,共17页
The optimizationfield has grown tremendously,and new optimization techniques are developed based on statistics and evolutionary procedures.There-fore,it is necessary to identify a suitable optimization technique for a... The optimizationfield has grown tremendously,and new optimization techniques are developed based on statistics and evolutionary procedures.There-fore,it is necessary to identify a suitable optimization technique for a particular application.In this work,Black Widow Optimization(BWO)algorithm is intro-duced to minimize the cost functions in order to optimize the Multi-Area Economic Dispatch(MAED).The BWO is implemented for two different-scale test systems,comprising 16 and 40 units with three and four areas.The performance of BWO is compared with the available optimization techniques in the literature to demonstrate the strategy’s efficacy.Results show that the optimized cost for four areas with 16 units is found to be 7336.76$/h,whereas it is 121,589$/h for four areas with 40 units using BWO.It is also noted that optimization algo-rithms other than BWO require higher cost value.The best-optimized solution for emission is achieved at 9.2784e+06 tones/h,and it is observed that there is a considerable difference between the worst and the best values.Also,the suggested technique is implemented for large-scale test systems successfully with high precision,and rapid convergence occurs in MAED. 展开更多
关键词 Black widow optimization algorithm multi-objective multi-area economic dispatch emission optimization cost optimization
下载PDF
Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading
18
作者 Song Zhang Wensheng Li +3 位作者 Zhao Li Xiaolei Zhang Zhipeng Lu Xiaoning Ge 《Energy Engineering》 EI 2023年第1期181-199,共19页
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo... Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system. 展开更多
关键词 Integrated energy system low-carbon economic dispatch integrated demand response ladder-type carbon trading thermal comfort elasticity
下载PDF
Two-Stage Optimal Dispatching of Wind Power-Photovoltaic-Solar Thermal Combined System Considering Economic Optimality and Fairness
19
作者 Weijun Li Xin Die +2 位作者 Zhicheng Ma Jinping Zhang Haiying Dong 《Energy Engineering》 EI 2023年第4期1001-1022,共22页
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m... Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan. 展开更多
关键词 Economic optimality FAIRNESS combined power generation the fuzzy comprehensive ranking priority optimal dispatching
下载PDF
考虑源荷不确定性及用户响应行为的电力系统低碳经济调度 被引量:6
20
作者 廖望 刘东 +1 位作者 巫宇锋 翁嘉明 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期905-917,I0005,共14页
电力系统是未来实现碳中和目标的重要领域,随着源-荷不确定性的加剧,基于确定性模型的低碳经济调度方法无法准确描述不确定因素对碳排放的影响。针对上述问题,该文首先从系统层面构建考虑不确定性的低碳鲁棒优化模型,利用概率模型对源... 电力系统是未来实现碳中和目标的重要领域,随着源-荷不确定性的加剧,基于确定性模型的低碳经济调度方法无法准确描述不确定因素对碳排放的影响。针对上述问题,该文首先从系统层面构建考虑不确定性的低碳鲁棒优化模型,利用概率模型对源荷不确定因素进行建模,并采用机会约束对目标满足期望的显著性水平进行描述,通过最大化不确定因素的置信水平得出风险规避策略下的鲁棒调度方案。接着从用户层面构建基于事件驱动的用户低碳响应模型,根据系统层计算结果,通过设定事件触发的碳排放阈值定义碳排放超额事件,并以价格形式引导用户的低碳用能行为。最后通过算例分析,验证所提模型能有效量化评估系统的低碳经济调度不确定性水平,充分发挥用户侧降碳能力,实现源荷双侧低碳目标的协同。 展开更多
关键词 鲁棒优化 低碳经济调度 事件驱动 需求响应
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部