期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
6
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LSA降维的RPCL文本聚类算法
被引量:
5
1
作者
高茂庭
王正欧
《计算机工程与应用》
CSCD
北大核心
2006年第23期138-140,共3页
文本聚类中,存在诸如文本特征空间维数巨大、聚类的数目不能事先确定等问题。隐含语义分析方法可以对文本特征空间作降维处理并有效地凸现出文本和词条之间的语义关系;次胜者受罚竞争学习规则可以进行有效的聚类并自动确定适当的聚类数...
文本聚类中,存在诸如文本特征空间维数巨大、聚类的数目不能事先确定等问题。隐含语义分析方法可以对文本特征空间作降维处理并有效地凸现出文本和词条之间的语义关系;次胜者受罚竞争学习规则可以进行有效的聚类并自动确定适当的聚类数目。将这两种方法结合进行文本聚类可以在一定程度上解决维数和聚类数的问题,实验表明,这种方法能够收到较好的聚类效果,同时,实验还验证了向量余弦距离比欧氏距离方法更适合于文本相似度的计算。
展开更多
关键词
文本聚类
次胜者受罚竞争学习
隐含语义分析
聚类分析
下载PDF
职称材料
基于RPCL的模糊关联规则挖掘
被引量:
1
2
作者
谢皝
张平伟
罗晟
《计算机工程》
CAS
CSCD
北大核心
2011年第19期44-46,共3页
在模糊关联规则的挖掘过程中,很难预先知道每个属性合适的模糊集。针对该问题,提出基于次胜者受罚竞争学习的模糊关联规则挖掘算法,无需先验知识,即可根据每个属性的性质找出对应的模糊集,并确定模糊集的数目。实验结果表明,与同类算法...
在模糊关联规则的挖掘过程中,很难预先知道每个属性合适的模糊集。针对该问题,提出基于次胜者受罚竞争学习的模糊关联规则挖掘算法,无需先验知识,即可根据每个属性的性质找出对应的模糊集,并确定模糊集的数目。实验结果表明,与同类算法相比,该算法可以挖掘出更多有趣的关联规则。
展开更多
关键词
模糊集
隶属度函数
聚类
次胜者受罚竞争学习
关联规则
下载PDF
职称材料
基于样本空间分布密度的改进次胜者受罚竞争学习算法
被引量:
5
3
作者
谢娟英
郭文娟
+1 位作者
谢维信
高新波
《计算机应用》
CSCD
北大核心
2012年第3期638-642,共5页
针对传统次胜者受罚竞争学习(RPCL)算法忽略数据集几何结构对节点权值调整的影响,以及魏立梅等提出的新RPCL算法(魏立梅,谢维信.聚类分析中竞争学习的一种新算法.电子科学学刊,2000,22(1):13-18)引入密度来对节点的权值进行调整时,密度...
针对传统次胜者受罚竞争学习(RPCL)算法忽略数据集几何结构对节点权值调整的影响,以及魏立梅等提出的新RPCL算法(魏立梅,谢维信.聚类分析中竞争学习的一种新算法.电子科学学刊,2000,22(1):13-18)引入密度来对节点的权值进行调整时,密度定义的主观性,提出基于样本空间分布密度的改进RPCL算法。该算法根据数据集样本自然分布定义样本密度,将此密度引入RPCL节点权值调整;使用UCI机器学习数据库数据集以及随机生成的带有噪声点的人工模拟数据集对算法进行实验测试,对算法确定数据集类簇数目的准确率、运行时间、聚类误差平方和、聚类结果的Rand指数、Jaccard系数以及Adjust Rand index参数进行分析比较。各项实验结果显示:所提算法优于原始RPCL算法和魏立梅算法,具有更好的聚类效果,对噪声数据有很强的抗干扰性能。所提算法不仅能根据样本的自然分布确定数据集的合理类簇数目,而且能确定合适的类簇中心,提高聚类的准确性,使聚类结果尽可能快地收敛到全局最优解。
展开更多
关键词
聚类
次胜者受罚竞争学习算法
样本密度
聚类数目
聚类中心
下载PDF
职称材料
竞争与动态合作学习聚类分析算法
被引量:
2
4
作者
李涛
裴文江
+1 位作者
王少平
张晓明
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2010年第1期102-108,共7页
从竞争与合作学习(CCL)算法的半合作机制出发,提出了基于自适应调节合作群体内种子学习率机制的竞争与动态合作学习(CDCL)聚类分析算法.该算法在保证所有种子以较高精度收敛性于各聚类中心的同时,可有效克服同类算法普遍存在的对种子初...
从竞争与合作学习(CCL)算法的半合作机制出发,提出了基于自适应调节合作群体内种子学习率机制的竞争与动态合作学习(CDCL)聚类分析算法.该算法在保证所有种子以较高精度收敛性于各聚类中心的同时,可有效克服同类算法普遍存在的对种子初始分布敏感、收敛速度不稳定及无法适用于异构聚类分析等问题.混合高斯聚类分析与彩色图像分割实验结果验证了CDCL的有效性,且在复杂条件下其聚类分析性能远超出CCL及其他RPCL衍生算法.
展开更多
关键词
聚类分析
次胜者受罚竞争学习
竞争与合作学习
竞争与动态合作学习
下载PDF
职称材料
逆向工程中点云孔洞修补技术研究
被引量:
3
5
作者
王春香
孟宏
+1 位作者
张勇
张文敬
《机械科学与技术》
CSCD
北大核心
2018年第5期729-735,共7页
对于散乱点云模型上的大面积、跨面孔洞,逆向软件往往难以修补。为了提高孔洞修补精度、获得完整的点云模型,提出了对手受惩罚竞争学习算法(Rival penalized competitive learning,RPCL)和模糊C均值聚类算法(Fuzzy C-means,FCM)相结合...
对于散乱点云模型上的大面积、跨面孔洞,逆向软件往往难以修补。为了提高孔洞修补精度、获得完整的点云模型,提出了对手受惩罚竞争学习算法(Rival penalized competitive learning,RPCL)和模糊C均值聚类算法(Fuzzy C-means,FCM)相结合的综合改进径向基函数神经网络(RBF)算法,建立了基于改进算法的点云孔洞修补模型,并以挖掘机斗齿和汽车模型为研究对象,利用RPCL-FCM-RBF联合算法对不同特征的点云孔洞进行了修补研究。结果表明,该算法在很大程度上提高了点云孔洞的修补精度,其补洞效果远优于逆向软件。而且,较之传统的RBF神经网络,该方法所建模型具有更高的预测精度、能够有效地调整洞口缺失数据、实现点云孔洞的精确修复,实用性强。
展开更多
关键词
径向基函数神经网络(RBF)
对手受惩罚竞争学习算法(
rpcl
)
模糊C均值聚类算法(FCM)
孔洞修补
MATLAB
下载PDF
职称材料
可区分惩罚控制竞争学习算法
被引量:
1
6
作者
张锋
赵杰煜
朱绍军
《模式识别与人工智能》
EI
CSCD
北大核心
2014年第5期426-434,共9页
竞争学习在聚类分析中是一种重要的学习方式,次胜者惩罚竞争学习(RPCL)算法虽能自动选择合理的类别数,但其性能对学习率和惩罚率的取值较敏感,其变种惩罚控制竞争学习(RPCCL)算法将所有的竞争单元当成冗余单元进行惩罚也不合理.文中提...
竞争学习在聚类分析中是一种重要的学习方式,次胜者惩罚竞争学习(RPCL)算法虽能自动选择合理的类别数,但其性能对学习率和惩罚率的取值较敏感,其变种惩罚控制竞争学习(RPCCL)算法将所有的竞争单元当成冗余单元进行惩罚也不合理.文中提出一种可区分惩罚控制竞争学习算法(DRPCCL).算法中获胜单元的学习率会在迭代过程中自适应调整.同时该算法使用一种可区分惩罚控制机制来区分竞争单元中的冗余单元和正确单元,给予冗余单元较重惩罚,正确单元轻微惩罚,使得算法能自动确定正确类别数和中心点位置.最后通过实验对比分析证明DRPCCL算法的聚类效果比RPCL算法和RPCCL算法更准确.
展开更多
关键词
聚类分析
竞争
胜者惩罚竞争学习(
rpcl
)
可区分的惩罚控制机制
下载PDF
职称材料
题名
基于LSA降维的RPCL文本聚类算法
被引量:
5
1
作者
高茂庭
王正欧
机构
天津大学系统工程研究所
上海海事大学计算机系
出处
《计算机工程与应用》
CSCD
北大核心
2006年第23期138-140,共3页
基金
国家自然科学基金资助项目(编号:60275020)
上海市教委科研项目(编号:04FB22)
上海海事大学重点学科建设项目(编号:XL0101)
文摘
文本聚类中,存在诸如文本特征空间维数巨大、聚类的数目不能事先确定等问题。隐含语义分析方法可以对文本特征空间作降维处理并有效地凸现出文本和词条之间的语义关系;次胜者受罚竞争学习规则可以进行有效的聚类并自动确定适当的聚类数目。将这两种方法结合进行文本聚类可以在一定程度上解决维数和聚类数的问题,实验表明,这种方法能够收到较好的聚类效果,同时,实验还验证了向量余弦距离比欧氏距离方法更适合于文本相似度的计算。
关键词
文本聚类
次胜者受罚竞争学习
隐含语义分析
聚类分析
Keywords
text clustering,
rival
Penalized
competitive
learning
(rpcl
), Latent Semantic Analysis (LSA), clustering analysis
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
基于RPCL的模糊关联规则挖掘
被引量:
1
2
作者
谢皝
张平伟
罗晟
机构
上海大学计算机工程与科学学院
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第19期44-46,共3页
文摘
在模糊关联规则的挖掘过程中,很难预先知道每个属性合适的模糊集。针对该问题,提出基于次胜者受罚竞争学习的模糊关联规则挖掘算法,无需先验知识,即可根据每个属性的性质找出对应的模糊集,并确定模糊集的数目。实验结果表明,与同类算法相比,该算法可以挖掘出更多有趣的关联规则。
关键词
模糊集
隶属度函数
聚类
次胜者受罚竞争学习
关联规则
Keywords
fuzzy set
membership function
clustering
rival
Penalized
competitive
learning(
rpcl)
association rule
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于样本空间分布密度的改进次胜者受罚竞争学习算法
被引量:
5
3
作者
谢娟英
郭文娟
谢维信
高新波
机构
陕西师范大学计算机科学学院
西安电子科技大学电子工程学院
深圳大学信息工程学院
出处
《计算机应用》
CSCD
北大核心
2012年第3期638-642,共5页
基金
中央高校基本科研业务费专项资金资助项目(GK200901006
GK201001003)
陕西省自然科学基础研究计划项目(2010JM3004)
文摘
针对传统次胜者受罚竞争学习(RPCL)算法忽略数据集几何结构对节点权值调整的影响,以及魏立梅等提出的新RPCL算法(魏立梅,谢维信.聚类分析中竞争学习的一种新算法.电子科学学刊,2000,22(1):13-18)引入密度来对节点的权值进行调整时,密度定义的主观性,提出基于样本空间分布密度的改进RPCL算法。该算法根据数据集样本自然分布定义样本密度,将此密度引入RPCL节点权值调整;使用UCI机器学习数据库数据集以及随机生成的带有噪声点的人工模拟数据集对算法进行实验测试,对算法确定数据集类簇数目的准确率、运行时间、聚类误差平方和、聚类结果的Rand指数、Jaccard系数以及Adjust Rand index参数进行分析比较。各项实验结果显示:所提算法优于原始RPCL算法和魏立梅算法,具有更好的聚类效果,对噪声数据有很强的抗干扰性能。所提算法不仅能根据样本的自然分布确定数据集的合理类簇数目,而且能确定合适的类簇中心,提高聚类的准确性,使聚类结果尽可能快地收敛到全局最优解。
关键词
聚类
次胜者受罚竞争学习算法
样本密度
聚类数目
聚类中心
Keywords
clustering
rival
Penalized
competitive
learning(
rpcl)
algorithm
sample density
cluster number
cluster center
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
竞争与动态合作学习聚类分析算法
被引量:
2
4
作者
李涛
裴文江
王少平
张晓明
机构
东南大学信息科学与工程学院
香港浸会大学计算机科学系
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2010年第1期102-108,共7页
基金
国家自然科学基金(60672095)
国家863计划基金(2007AA11Z210)
教育部博士点基金(20070286004)
文摘
从竞争与合作学习(CCL)算法的半合作机制出发,提出了基于自适应调节合作群体内种子学习率机制的竞争与动态合作学习(CDCL)聚类分析算法.该算法在保证所有种子以较高精度收敛性于各聚类中心的同时,可有效克服同类算法普遍存在的对种子初始分布敏感、收敛速度不稳定及无法适用于异构聚类分析等问题.混合高斯聚类分析与彩色图像分割实验结果验证了CDCL的有效性,且在复杂条件下其聚类分析性能远超出CCL及其他RPCL衍生算法.
关键词
聚类分析
次胜者受罚竞争学习
竞争与合作学习
竞争与动态合作学习
Keywords
clustering analysis
rival peralized competitive learning(rpcl)
competitive
and cooperative
learning(
CCL)
competitive
and dynamic cooperative
learning(
CDCL)
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
逆向工程中点云孔洞修补技术研究
被引量:
3
5
作者
王春香
孟宏
张勇
张文敬
机构
内蒙古科技大学机械学院
出处
《机械科学与技术》
CSCD
北大核心
2018年第5期729-735,共7页
基金
内蒙古自治区高等学校科学研究项目(NJZY16167)
内蒙古自治区自然科学基金项目(2017MS(LH)0530)资助
文摘
对于散乱点云模型上的大面积、跨面孔洞,逆向软件往往难以修补。为了提高孔洞修补精度、获得完整的点云模型,提出了对手受惩罚竞争学习算法(Rival penalized competitive learning,RPCL)和模糊C均值聚类算法(Fuzzy C-means,FCM)相结合的综合改进径向基函数神经网络(RBF)算法,建立了基于改进算法的点云孔洞修补模型,并以挖掘机斗齿和汽车模型为研究对象,利用RPCL-FCM-RBF联合算法对不同特征的点云孔洞进行了修补研究。结果表明,该算法在很大程度上提高了点云孔洞的修补精度,其补洞效果远优于逆向软件。而且,较之传统的RBF神经网络,该方法所建模型具有更高的预测精度、能够有效地调整洞口缺失数据、实现点云孔洞的精确修复,实用性强。
关键词
径向基函数神经网络(RBF)
对手受惩罚竞争学习算法(
rpcl
)
模糊C均值聚类算法(FCM)
孔洞修补
MATLAB
Keywords
radial basis function networks (RBF)
rival
penalized
competitive
learning
(rpcl
)
clusteringalgorithms
hole filling
MATLAB
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
可区分惩罚控制竞争学习算法
被引量:
1
6
作者
张锋
赵杰煜
朱绍军
机构
宁波大学信息科学与工程学院
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2014年第5期426-434,共9页
基金
国家自然科学基金项目(No.61175026)
国家"十二五"科技支撑计划项目(No.2012BAF12B11)
+2 种基金
科技部国际科技合作专项项目(No.2013DFG12810)
浙江省自然科学基金重大项目(No.D1080807)
浙江省国际科技合作专项项目(No.2013C24027)资助
文摘
竞争学习在聚类分析中是一种重要的学习方式,次胜者惩罚竞争学习(RPCL)算法虽能自动选择合理的类别数,但其性能对学习率和惩罚率的取值较敏感,其变种惩罚控制竞争学习(RPCCL)算法将所有的竞争单元当成冗余单元进行惩罚也不合理.文中提出一种可区分惩罚控制竞争学习算法(DRPCCL).算法中获胜单元的学习率会在迭代过程中自适应调整.同时该算法使用一种可区分惩罚控制机制来区分竞争单元中的冗余单元和正确单元,给予冗余单元较重惩罚,正确单元轻微惩罚,使得算法能自动确定正确类别数和中心点位置.最后通过实验对比分析证明DRPCCL算法的聚类效果比RPCL算法和RPCCL算法更准确.
关键词
聚类分析
竞争
胜者惩罚竞争学习(
rpcl
)
可区分的惩罚控制机制
Keywords
Cluster Analysis,
competitive
learning
,
rival
Penalized
competitive
learning
(
rpcl)
,Discriminative Penalization Controlled Mechanism
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LSA降维的RPCL文本聚类算法
高茂庭
王正欧
《计算机工程与应用》
CSCD
北大核心
2006
5
下载PDF
职称材料
2
基于RPCL的模糊关联规则挖掘
谢皝
张平伟
罗晟
《计算机工程》
CAS
CSCD
北大核心
2011
1
下载PDF
职称材料
3
基于样本空间分布密度的改进次胜者受罚竞争学习算法
谢娟英
郭文娟
谢维信
高新波
《计算机应用》
CSCD
北大核心
2012
5
下载PDF
职称材料
4
竞争与动态合作学习聚类分析算法
李涛
裴文江
王少平
张晓明
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2010
2
下载PDF
职称材料
5
逆向工程中点云孔洞修补技术研究
王春香
孟宏
张勇
张文敬
《机械科学与技术》
CSCD
北大核心
2018
3
下载PDF
职称材料
6
可区分惩罚控制竞争学习算法
张锋
赵杰煜
朱绍军
《模式识别与人工智能》
EI
CSCD
北大核心
2014
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部