Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures duri...Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures during flood incidents. Experimental studies for securing the stability of flood control for these artificial structures have been insufficient, and designs applying the existing domestic design standards would not be suitable for the steep flow sections such as the actual small rivers, possibly aggravating the damages. The present study involved hydraulic model experiments conducted in a laboratory to investigate the surrounding flow patterns according to the river bed slope at the downstream part of the weir model. Further, the scour characteristics in the apron section during the overflow of the structure were analyzed to determine the appropriateness of the apron length. Thus, as the upstream river bed slope gradually increased, the experimental scour length deviated more from the design criteria formula. The results suggest that both the formula suggested by the National Construction Research Institute and Bligh’s formula presented in the River Design Criteria are not suitable for steep-slope rivers, such as small rivers in Korea, because both formulas were proposed based on the seepage line distance and river bed materials without considering the slope of the river bed. Thus, in designing the apron and bed pitching of weirs and drop structures, the river bed slope, scour characteristics of weir overflow, and existing design factors should be comprehensively considered to devise a design formula appropriate for environment of the small rivers in Korea.展开更多
Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional de...Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional design criteria formulas to secure the stability of structures such as weirs and drop structures. Although studies on the stability of these structures have been conducted through small-scale experiments, few empirical studies have investigated the hydraulic phenomena occurring near actual artificial structures. In this study, we fabricated real-size models of weir and drop structure at the Andong River Experiment Center and investigated the flow patterns around the structures by applying the particle image velocimetry analysis technique with a flow tracker. We also measured the scour length in the waterspout section when the structures are overflowing, and compared it with the values calculated using the formula. Consequently, as the supply flow increases, the result is different from the value calculated using the formula given in the existing design standard, and it is judged to be inappropriate for a small stream area with high flow rate. Thus, it is necessary to consider the design factors such as energy gradient and the flow amount per unit width into weir and drop structure as well as the existing design factors in designing an apron section for a weir and drop structure.展开更多
The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and...The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.展开更多
文摘Various river projects are underway in small rivers in Korea that typically have natural flows. However, recent findings have shown that damages could be aggravated by structures such as weirs and drop structures during flood incidents. Experimental studies for securing the stability of flood control for these artificial structures have been insufficient, and designs applying the existing domestic design standards would not be suitable for the steep flow sections such as the actual small rivers, possibly aggravating the damages. The present study involved hydraulic model experiments conducted in a laboratory to investigate the surrounding flow patterns according to the river bed slope at the downstream part of the weir model. Further, the scour characteristics in the apron section during the overflow of the structure were analyzed to determine the appropriateness of the apron length. Thus, as the upstream river bed slope gradually increased, the experimental scour length deviated more from the design criteria formula. The results suggest that both the formula suggested by the National Construction Research Institute and Bligh’s formula presented in the River Design Criteria are not suitable for steep-slope rivers, such as small rivers in Korea, because both formulas were proposed based on the seepage line distance and river bed materials without considering the slope of the river bed. Thus, in designing the apron and bed pitching of weirs and drop structures, the river bed slope, scour characteristics of weir overflow, and existing design factors should be comprehensively considered to devise a design formula appropriate for environment of the small rivers in Korea.
文摘Flood damage has aggravated recently owing to artificial structures in high flow rare areas such as small rivers, which can lead to secondary damage. In this regard, studies are required to examine the conventional design criteria formulas to secure the stability of structures such as weirs and drop structures. Although studies on the stability of these structures have been conducted through small-scale experiments, few empirical studies have investigated the hydraulic phenomena occurring near actual artificial structures. In this study, we fabricated real-size models of weir and drop structure at the Andong River Experiment Center and investigated the flow patterns around the structures by applying the particle image velocimetry analysis technique with a flow tracker. We also measured the scour length in the waterspout section when the structures are overflowing, and compared it with the values calculated using the formula. Consequently, as the supply flow increases, the result is different from the value calculated using the formula given in the existing design standard, and it is judged to be inappropriate for a small stream area with high flow rate. Thus, it is necessary to consider the design factors such as energy gradient and the flow amount per unit width into weir and drop structure as well as the existing design factors in designing an apron section for a weir and drop structure.
文摘The river reach downstream of a floodgate at the estuary of the Xinyihe River is about 1.3km long, and the riverbed is composed of clotty clay. In the experiment, soil samples are taken from the construction site, and the incipient velocity is determined in a laboratory flume, and it is used to design the scour model and to select model sand material. The experimental results show that scours below the floodgate is unavoidable due to large discharge and Low tidal level. Scours is caused by two factors: the rapid flow passing though the floodgate and the water drop near the river mouth during low ride, and the scout below the floodgate is more critical to the structural design. It is suggested that anti-scour walls should be used instead of riprap. The ideas and methods adopted in the experiment can be used as reference in the study on river scout under similar conditions.