期刊文献+
共找到5,179篇文章
< 1 2 250 >
每页显示 20 50 100
Urban and river flooding:Comparison of flood risk management approaches in the UK and China and an assessment of future knowledge needs 被引量:6
1
作者 Matteo Rubinato Andrew Nichols +5 位作者 Yong Peng Jian-min Zhang Craig Lashford Yan-peng Cai Peng-zhi Lin Simon Tait 《Water Science and Engineering》 EI CAS CSCD 2019年第4期274-283,共10页
Increased urbanisation,economic growth,and long-term climate variability have made both the UK and China more susceptible to urban and river flooding,putting people and property at increased risk.This paper presents a... Increased urbanisation,economic growth,and long-term climate variability have made both the UK and China more susceptible to urban and river flooding,putting people and property at increased risk.This paper presents a review of the current flooding challenges that are affecting the UK and China and the actions that each country is undertaking to tackle these problems.Particular emphases in this paper are laid on(1)learning from previous flooding events in the UK and China,and(2)which management methodologies are commonly used to reduce flood risk.The paper concludes with a strategic research plan suggested by the authors,together with proposed ways to overcome identified knowledge gaps in flood management.Recommendations briefly comprise the engagement of all stakeholders to ensure a proactive approach to land use planning,early warning systems,and water-sensitive urban design or redesign through more effective policy,multi-level flood models,and data driven models of water quantity and quality. 展开更多
关键词 Urban flooding river flooding Water management Review Strategic research plans Sponge cities
下载PDF
Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles 被引量:7
2
作者 JIN Qing ZHENG Ying-jie +4 位作者 CUI Xin-zhuang CUI She-qiang QI Hui ZHANG Xiao-ning WANG Shuai 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2113-2122,共10页
Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked... Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway. 展开更多
关键词 silt of Yellow river flood Field dynamic triaxial soil dynamic characteristic ultrasonic wave velocity
下载PDF
CHARACTERISTICS AND CAUSE ANALYSIS OF WESTERN PACIFIC SUBTROPICAL HIGH DURING THE HUAIHE RIVER FLOODS IN 2003 被引量:4
3
作者 金荣花 矫梅燕 +1 位作者 徐晶 秦华锋 《Journal of Tropical Meteorology》 SCIE 2006年第1期97-98,共2页
1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation pat... 1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting. 展开更多
关键词 the Huaihe river floods Western Pacific subtropical high abnormal characteristics cause analysis
下载PDF
Assessing Biogeomorphological State of the Teesta River Flood Plain: A Study on Gangachara Upazila, Rangpur, Bangladesh
4
作者 Sahidul Islam Subaran Chandra Sarker 《International Journal of Geosciences》 2017年第2期265-275,共11页
Teesta river flood plain is one of the most significant landscapes in Bangladesh. The main theme of this research was to assess the present biogeomorphological state (biomass, herbaceous vegetation species, density of... Teesta river flood plain is one of the most significant landscapes in Bangladesh. The main theme of this research was to assess the present biogeomorphological state (biomass, herbaceous vegetation species, density of all vegetation species, flood plain extension mapping) of Teesta river flood plain under Gangachara upazila. The research work was conducted based on the objectives to prepare a map of Teesta river flood plain extension area, to estimate herbaceous vegetation (biomass, species types), and to find out the vegetation density to assess the present biogeomorphological state of study area. To present the flood plain area of Teesta river in the Gangachara upazila, base map has been used;herbaceous vegetation samples have been collected through quadrat method to estimate biomass (both in dry and before dry condition) using digital weight machine;vegetation density has been shown through NDVI of satellite image (Landsat-8) using red and NIR band in ArcGIS 10.1 software. From the results of this research, river flood plain area is found 68.5 sq. km;total 31 types of herbaceous species have been identified where Pouzolzia indica is the most dominated species covering 11.59% of the total area;maximum DNs value of NDVI is found +0.475242 which represents the highest vegetation density covering an area of 78 sq. km of the total area. The research may assist for the further study of river flood plain biogeomorphology throughout the country as well as in the world. 展开更多
关键词 river flood PLAIN Biomass NDVI HERBACEOUS Vegetation QUADRAT
下载PDF
A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood 被引量:4
5
作者 Jun XIA Jin CHEN 《Science China Earth Sciences》 SCIE EI CSCD 2021年第1期1-9,共9页
Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major ... Flood control of the Yangtze River is an important part of China’s national water security.In July 2020,due to continuous heavy rainfall,the water levels along the middle-lower reaches of the Yangtze River and major lakes constantly exceeded the warning levels,in which Taihu Lake exceeded its highest safety water level and some stations of Poyang Lake reached their highest water levels in its history.In August 2020,another huge flood occurred in the Minjiang River and the Jialing River in the upper Yangtze River,and some areas of Chongqing Municipality and other cities along the rivers were inundated,resulting in great pressure on flood control and high disaster losses.The 2020 Yangtze River flood has received extensive media coverage and raised concerns on the roles of the Three Gorges Dam and other large reservoirs in flood control.Here we analyze the changes in the pattern of the Yangtze River flood control by comparing the strategies to tackle the three heavy floods occurring in 1954,1998,and 2020.We propose that the overall strategy of the Yangtze River flood control in the new era should adhere to the principle of"Integration of storage and drainage over the entire Yangtze River Basin,with draining floods downstream as the first priority"by using both engineering and non-engineering measures.On the basis of embankments,the engineering measures should use the Three Gorges Dam and other large reservoirs as the major regulatory means,promote the construction of key flood detention areas,keep the floodways clear,and maintain the ecosystem services of wetlands and shoals.In terms of non-engineering measures,we should strengthen adaptive flood risk management under climate change,standardize the use of lands in flood detention areas,give space to floods,and promote the implementation of flood risk maps and flood insurance policies.The ultimate goal of this new flood control system is to enhance the adaptability to frequent floods and increase the resilience to extreme flood disasters. 展开更多
关键词 The 2020 Yangtze river flood Yangtze river flood Control System Three Gorges Dam Protection of wetlands and shoals Non-engineering measures
原文传递
基于MIKE HYDRO River模型的轨交交通施工期防汛安全影响论证
6
作者 陆娴 《价值工程》 2024年第4期143-145,共3页
轨交交通施工期间,受车站结构设计、周边场地限制等因素影响,河道需要断流施工,断流会对区域的防洪除涝安全及水环境产生影响。本文以上海轨道交通13号线西延伸工程为例,构建一维河网水动力模型,分析排涝及引调水工况下水位及水质变化... 轨交交通施工期间,受车站结构设计、周边场地限制等因素影响,河道需要断流施工,断流会对区域的防洪除涝安全及水环境产生影响。本文以上海轨道交通13号线西延伸工程为例,构建一维河网水动力模型,分析排涝及引调水工况下水位及水质变化情况。结果表明,平原河网地区个别河道断流对于区域防洪除涝安全影响较小,会严重影响河道断流处的水环境;通过增设导流措施可以减轻断流的影响,为平原河网地区河道断流影响分析及措施制定提供依据。 展开更多
关键词 轨交交通 平原河网 MIKE HYDRO river 防汛安全 水环境改善
下载PDF
Analysis of Flood Risks Upstream from the Imboulou Hydroelectric Dam on the Léfini River, a Tributary of the Right Bank of the Congo River
7
作者 Shyrland Dave Bibi Jean Armand Paka +3 位作者 Rene Josue Samba Jean Bienvenu Dinga Christian Tathy Ernest Amoussou 《Open Journal of Modern Hydrology》 2023年第4期259-275,共17页
The analysis of the risk of flooding upstream from the Imboulou hydroelectric dam on the Léfini River in the Republic of Congo-Brazzaville, focused on the evolution of annual rainfall and flow in the study area d... The analysis of the risk of flooding upstream from the Imboulou hydroelectric dam on the Léfini River in the Republic of Congo-Brazzaville, focused on the evolution of annual rainfall and flow in the study area during the period from 1970 to 2020 before and after the building of the dam in 2005, by applying statistical methods. These methods were used to analyse the spatial and temporal evolution of rainfall and flow at the unique hydrometric station located at the RN2 (National Road N°2) bridge in the village of Mbouambé in the Pool region. This work has shown that rainfall is not the cause of flooding in the Léfini catchment area. The monthly flow coefficient (MFC) showed exceptional flooding from November and December onwards after the dam was built, resulting in a variability of flows, with periods of high and low water. In addition, the annual average flow (AAF) and the maximum average flow (MAF) increased after the dam was built. Maximum average flows (MAF) were higher than annual average flows (AAF) throughout the period of study (1970-2020). The annual and monthly rainfall-runoff relationship showed changes after the dam was built, particularly from 2009 and during the months of November and December. . 展开更多
关键词 Léfini river Imboulou Hydroelectric Dam floods Monthly Flow Coefficient Annual Average Flow Maximum Average Flows
下载PDF
Ganges and Brahmaputra River System: Need for a Multi-Country Plan for Cleaning, Mitigation, Restoration and Protection
8
作者 Kenneth Ray Olson Wadslin Frenelus 《Open Journal of Soil Science》 2024年第10期635-659,共25页
The Ganges and Brahmaputra River system is in the plains of the northern Indian subcontinent. The river is a wide sluggish stream flowing through densely populated and fertile agricultural regions of the world. The Ga... The Ganges and Brahmaputra River system is in the plains of the northern Indian subcontinent. The river is a wide sluggish stream flowing through densely populated and fertile agricultural regions of the world. The Ganges is known as the Hinduism holy river. In Bangladesh, the Brahmaputra is joined by the Teesta River. The western branch of the Brahmaputra confluences with the Ganges and contains most of the river flow. The eastern branch joins the Meghna River near Dhaka. The basin covers parts of four countries including India, Nepal, China, and Bangladesh. Of greater concern, however, has been the degradation in quality of the river water itself. The primary objective of this research is to encourage the development of a multi-country clean-up, mitigation, and protection plan for the Ganges-Brahmaputra rivers. This article constitutes a real tool for the restoration, enhancement and protection of the Ganges-Brahmaputra River system and its environment. The Ganges and Brahmaputra rivers are known for stream bank erosion, shifting channels, and sandbars that continually emerge in their course. The Ganges and Brahmaputra watershed is home to hundreds of millions of people, with the result that the river’s water over much of its course is highly polluted. Arsenic contamination of groundwater in Bangladesh continues to be the largest case of human poisoning in history. Catastrophic floods have prompted the World Bank to prepare a long-term flood-control plan for the region. Scores of cities and towns contribute to treated sewage into the river and its main tributaries, and dozens of manufacturing facilities contribute industrial waste. Also contributing to high pollution levels are agricultural runoff, the remnants of partially burned or unburned bodies from funeral pyres, and animal carcasses. High levels of disease-causing bacteria, as well as such toxic substances as chromium, cadmium, and arsenic, have been found in the Ganges and Brahmaputra. External research and funding of adsorptive media systems to help mitigate the high arsenic levels in drinking water (river and groundwater) is needed. The Ganges-Brahmaputra River system is of colossal importance to its entire environment. Restoration and protection measures must be adopted appropriately and at the scale of the concerned countries. 展开更多
关键词 GANGES Brahmaputra river India BANGLADESH Pollution floodING SUBSIDENCE
下载PDF
基于MIKE FLOOD的城市小流域内涝防治能力评估
9
作者 邵锦焯 陈汉杰 何坚鸿 《广东水利水电》 2024年第9期119-126,共8页
文章以广州市鹤洞涌小流域为研究对象,基于MIKE FLOOD构建了水动力耦合模型,模拟不同重现期降雨条件下流域内涝情况,对城市内涝防治能力进行评估,提出治理方案。研究结果表明,降雨强度的增大会使城区低洼地的内涝风险加剧,通过城市竖向... 文章以广州市鹤洞涌小流域为研究对象,基于MIKE FLOOD构建了水动力耦合模型,模拟不同重现期降雨条件下流域内涝情况,对城市内涝防治能力进行评估,提出治理方案。研究结果表明,降雨强度的增大会使城区低洼地的内涝风险加剧,通过城市竖向优化、区域海绵化改造、水务工程建设等措施,可有效提高区域内涝防治能力。耦合模型能较好的评估区域内涝防治能力,为城市治涝提供一定的参考。 展开更多
关键词 内涝防治 MIKE flood 小流域 鹤洞涌
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
10
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
Climatic Characteristics Analysis of Flood-producing Rainstorm in Duhe River Basin 被引量:1
11
作者 姚道强 任玮颖 徐茂玲 《Meteorological and Environmental Research》 CAS 2010年第5期12-16,21,共6页
Based on the data from 1998 to 2005,area rainfall,flow of main hydrologic stations in Duhe River and upstream water level of the dam of Huanglongtan Reservoir in the lower reaches of Duhe River were analyzed,and the s... Based on the data from 1998 to 2005,area rainfall,flow of main hydrologic stations in Duhe River and upstream water level of the dam of Huanglongtan Reservoir in the lower reaches of Duhe River were analyzed,and the standard of flood-producing rainstorm in Duhe River was given,while temporal and spatial distribution and circulation flow situation characteristic of flood-producing rainstorm in Duhe River were studied.The results showed that the flood-producing rainstorm in Duhe River was mainly continuous intensive precipitation with the characteristic of long duration.There was most rainfall in Zhuxiquan River,Zhushanguandu River and southwest part of the middle and upper reaches of Duhe River,and next came Zhuxi River.Flood-producing rainstorm occurred in Duhe River with some favorable circulation features.For example,it was more favorable in the west Pacific subtropical high,and the convergence zone at northeast-southwest direction was formed between subtropical high and continental high pressure at 700 hPa,while southwest vortex moved eastward.Low pressure system at 850 hPa in south part of plateau developed and moved eastward to Chongqing region and formed low vortex or shear near Duhe River basin.Moreover,the characteristics of physical quantity field were analyzed,the results showed that temperature in plateau area and the south area of Duhe River basin increased obviously before rainstorm,and east pathway was the main path of cold air which affected flood-producing rainstorm in Duhe River.There was a θse intensive belt with NEE-SWW direction at 30°-40° N at 925-500 hPa,and moisture convergence was beneficial to the occurrence of rainstorm in Duhe River. 展开更多
关键词 Duhe river basin flood-producing rainstorm Climatic characteristics China
下载PDF
Flood risk control of dams and dykes in middle reach of Huaihe River 被引量:3
12
作者 Zhen-kun MA Zi-wu FAN +1 位作者 Ming ZHANG Yi-lu SU 《Water Science and Engineering》 EI CAS CSCD 2014年第1期17-31,共15页
Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic di... Three stochastic mathematical models for calculation of the reservoir flood regulation process, river course flood release, and flood risk rate under flood control were established based on the theory of stochastic differential equations and features of flood control systems in the middle reach of the Huaihe River from Xixian to the Bengbu floodgate, comprehensively considering uncertain factors of hydrology, hydraulics, and engineering control. They were used to calculate the flood risk rate with flood regulation of five key reservoirs, including the Meishan, Xianghongdian, Nianyushan, Mozitan, and Foziling reservoirs in the middle reach of the Huaihe River under different flood frequencies, the flood risk rate with river course flood release under design and check floods for the trunk of the Huaihe River in conjunction with relevant flood storage areas, and the flood risk rate with operation of the Linhuaigang Project under design and check floods. The calculated results show that (l) the five reservoirs can withstand design floods, but the Xianghongdian and Foziling reservoirs will suffer overtopping accidents under check floods; (2) considering the service of flood storage areas under the design flood conditions of the Huaihe River, the mean flood risk rate with flood regulation of dykes and dams from Xixian to the Bengbu floodgate is about 0.2, and the trunk of the Huaihe River can generally withstand design floods; and (3) under a check flood with the flood return period of 1 000 years, the risk rate of overtopping accidents of the Linhuaigang Project is not larger than 0.15, indicating that it has a high flood regulation capacity. Through regulation and application of the flood control system of the Linhuigang Project, the Huaihe River Basin can withstand large floods, and the safety of the protected area can be ensured. 展开更多
关键词 stochastic mathematical model reservoir flood regulation river course flood release risk factor risk rate middle reach of Huaihe river
下载PDF
Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies 被引量:3
13
作者 郭裕福 赵 彦 王 嘉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期391-404,共14页
With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results sho... With the IAP/LASG GOALS model, the relationships between the floods in the Yangtze River valley arid sea surface temperature anomalies (SSTA) in the Pacific and Indian Oceans in 1998 have been studied. The results show that the model can reproduce the heavy rainfall over the Yangtze River valley in the sum-mer of 1998 forced by global observational sea surface temperatures (SST). The model can also reproduce the observed principal features of the subtropical high anomalies over the western Pacific. The experiments with the observed SST in different ocean areas and different periods have been made. By comparing the ef-fects of SSTA of different ocean areas on the floods, it is found that the SSTA in the Indian Ocean are a ma-jor contributor to the floods, and the results also show that the SSTA in the Indian Ocean and the western Pacific have a much closer relationship with the strong anomalies of the subtropical high over the western Pacific than the SSTA in other concerned areas. The study also indicates that the floods and subtropical high anomalies in the summer of 1998 are more controlled by the simultaneous summertime SSTA than by SSTA in the preceding winter and spring seasons. 展开更多
关键词 The Yangtze river valley floods SST anomalies Numerical simulation
下载PDF
The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin 被引量:24
14
作者 杨辉 李崇银 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期540-553,共14页
The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show th... The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years. 展开更多
关键词 summer severe flood and drought in the Changjiang-Huaihe river Basin intraseasonal oscillation ISO circulation pattern
下载PDF
GEOGRAPHIC ENVIRONMENT CHANGE AND FLOOD CATASTROPHE IN HUAIHE RIVER BASIN DURING LAST 2000 YEARS 被引量:1
15
作者 杨达源 王云飞 《Chinese Geographical Science》 SCIE CSCD 1996年第2期112-119,共8页
During the last 2000 years,flood and waterlogging catastrophes took place quite frequently in the Huaihe River Basin.In the authors’opinion,these natural calamities have a very close relation to the evolution of Hong... During the last 2000 years,flood and waterlogging catastrophes took place quite frequently in the Huaihe River Basin.In the authors’opinion,these natural calamities have a very close relation to the evolution of Hongze Lake.Formed initially within a man-made dyke that was built in the Han Dynasty about 2000 years ago, Hongze Lake brought out headward accumulation developing in the middle reaches of the Huaihe River, with its continuous aggravation on lake-bottom and consequent water-level rise. It was estimated that,on an average,there were 3400×104t sediment per kilometre per year deposited on the river bed from Lutaizi to Bengbu.Therefore,the rising of water-level and the drainage difficulty in the middle reaches of the Huaihe River aggravated local flood and waterlogging catastrophe here. 展开更多
关键词 Hongze Lake headward accumulation MIDDLE reaches of the Huaihe river flood CATASTROPHE
下载PDF
Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding 被引量:9
16
作者 洪洁莉 刘屹岷 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期755-768,共14页
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection wer... The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e., the East Asian rainy season in June) and the related tropical convection were investigated. During the both flooding cases, although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere, the phase of the Rossby wave train is different over Eurasian continent. During flooding in the Huaihe River valley, only one single blocking anticyclone is located over Baikal Lake. In contrast, during flooding in the Yangtze River valley, there are two blocking anticyclones. One is over the Ural Mountains and the other is over Northeast Asia. In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases, but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding. Fhrthermore, abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula. However, the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific. Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation. While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south, along with abundant rainfall. 展开更多
关键词 Huaihe river Yangtze river mei-yu flooding tropical convection heating anomaly
下载PDF
Mathematical model for flood routing in Jingjiang River and Dongting Lake network 被引量:6
17
作者 Zuo-tao XIE Fang-li YANG Xiao-li FU 《Water Science and Engineering》 EI CAS 2012年第3期259-268,共10页
The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical mode... The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream. 展开更多
关键词 Jingjiang river Dongting Lake Jing/iang flood diversion area flood routing rivernetworks 1-D and 2-D coupled model
下载PDF
Influence of Floodplain Area on Fish Species Richness in Waterbodies of the Chao Phraya River Basin, Thailand 被引量:1
18
作者 Wataru Tanaka Rottapon Wattanasiriserekul +5 位作者 Yuta Tomiyama Tomomi Yamasita Wikit Phinrub Tosapol Chamnivikaipong Apinun Suvarnaraksha Yukihiro Shimatani 《Open Journal of Ecology》 2015年第9期434-451,共18页
River-floodplain ecosystems are in delicate balance and are impacted by even minor changes in water availability. In this study, we surveyed fish assemblages and investigated environmental and landscape parameters in ... River-floodplain ecosystems are in delicate balance and are impacted by even minor changes in water availability. In this study, we surveyed fish assemblages and investigated environmental and landscape parameters in a total of 135 floodplain waterbodies (rivers, diversion canals, ponds, irrigation ditches, paddy fields, and wetlands) in the Chao Phraya River Basin in rainy (September 2014) and dry (March 2015) seasons. Factors affecting fish species richness in each type of waterbody were analyzed using generalized linear mixed models. Floodplain area around each surveyed waterbody was a major factor determining fish species richness in rivers, diversion canals, and ponds in the region. The contribution of floodplain area was equivalent to that of hydrology (current velocity, water depth) and water quality (dissolved oxygen, turbidity) in the waterbodies. The population of juvenile fishes was increased in temporarily connected floodplain waterbodies to main rivers compared with isolated waterbodies, and fluvial and lacustrine fishes were observed in the temporary inundated floodplain waterbodies during the rainy season. The high dependence of fish species richness on floodplain area in the region appeared to be a result of the use of inundated floodplains by fish species to forage and breed. Our results highlight the impact of flood control measures that reduces floodplain area. These measures must be reviewed to ensure the conservation of fish biodiversity in the Chao Phraya River Basin, one of the world’s most threatened floodplain systems. 展开更多
关键词 floodPLAIN FISH Species Richness LATERAL FISH Migration Chao Phraya river BASIN flood Pulse Concept
下载PDF
The 1999 Flood on Changjiang River and Some Thoughts on It 被引量:2
19
作者 WANG Sheng fuProfesor, Bureau of River Management, Changjiang Water Resources Commission,Wuhan 430010, China TAN Qi fuProfesor, Bureau of River Management, Changjiang Water Resources Commission,Wuhan 430010, China WU Dao xiSenior Engineer, Bureau of 《人民长江》 北大核心 2001年第S1期45-49,共5页
Following the basin wide heavy flood on Changjiang River in 1998, a significant flood occurred in 1999. Comparative analysis of both floods in terms of flows and flooding situations shows that both floods had one comm... Following the basin wide heavy flood on Changjiang River in 1998, a significant flood occurred in 1999. Comparative analysis of both floods in terms of flows and flooding situations shows that both floods had one common feature, that is, the flood stages were fairly high. But they differed greatly at the same time, that is, the 1998 flood was a basin wide heavy one while the 1999 flood was a significant local one. At Yichang station there occurred eight flood peaks in 1998, while in 1999 only three peaks took place. The maximum peak discharge at this station in 1999 was 57 600 cubic meters per second, which was smaller than that in 1998. The maximum flood-volume in 30 d of the 1998 flood at this station equaled that in 1954, when an extraordinary heavy flood happened on the River, while the maximum flood-volume in 30 d in 1999 was 25.8 billion cubic meters per second smaller than the 1998 one. It is seen that inflow floods from the upstream Changjiang River (above Yichang) in 1999 were not so big. Comparison of flood volumes in longer period shows that the 1999 flood was relatively concentrated while the 1998 one had lasted longer duration. Analysis shows that flooding situations in both years differed significantly in terms of the flood volumes diverted from river channels due to dyke breaches and collapses, the cases of polder embankment collapses, the areas of inundated cultivated land and the numbers of dangerous events for hydraulic structures. These differences had been resulted from the different properties of both floods and the dyke strengthening efforts made after the 1998 flood. It is seen that flood control engineering constructions initiated in the days following the 1998 flood have played an important role in fighting the 1999 flood. 展开更多
关键词 RAINSTORM floods highest flood STAGE flood property CHANGJIANG river
下载PDF
Flood Change Detection and Attribution Using Simulation Approach in Data-Scarce Watersheds: A Case of Wabi Shebele River Basin, Ethiopia 被引量:1
20
作者 Fraol Abebe Wudineh Semu Ayalew Moges Belete Berhanu Kidanewold 《Journal of Water Resource and Protection》 2021年第5期362-393,共32页
Flood events vary with sub-regions, sites and time and show complex characteristics. This study investigated temporal variabilities in flood discharges and relationships with principal driving factors in data scarce W... Flood events vary with sub-regions, sites and time and show complex characteristics. This study investigated temporal variabilities in flood discharges and relationships with principal driving factors in data scarce Wabi Shebele River Basin. The preliminary analysis using exploratory data analysis (EDA) on annual and seasonal maximum discharge reveals that there are cycles of extreme flows at five- and ten-year intervals respectively throughout the basin. The statistical verification using the Mann-Kendall test and Quantile perturbation method indicates a significant trend in flood magnitude and frequency entire the basin in the early 21st century. For longest period (1980-2010) annual maximum stream flow shows significant positive trend (p-value < 0.05) in middle catchments and negative trend (p-value < 0.05) in eastern catchments. The years: 1986-1995, 2006-2010 are the years in which positive significant anomalies occurred in all seasons, while the years: 1980-1985, 1996-2005 are the occurrence years of significant negative anomalies. Rainfall from climate drivers;DA, BE, VS and fraction of sand from environmental background drivers;fraction of forest and population density from external factors were identified as the powerful driving factors of flood variabilities in the Wabi Shebele River Basin. 展开更多
关键词 flood Events Watersheds Wabi Shebele river Hydrological Model Driving Factors of flood
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部