期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Interdecadal variability of summer precipitation in the Three River Source Region: Influences of SST and zonal shifts of the East Asian subtropical westerly jet 被引量:1
1
作者 Yumeng Liu Xianhong Meng +5 位作者 Lin Zhao S-Y.Simon Wang Lixia Zhang Zhaoguo Li Chan Wang Yingying An 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期47-53,共7页
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i... Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ. 展开更多
关键词 Summer precipitation East Asian subtropical westerly jet Three river Source Region Atlantic-Eurasian teleconnection
下载PDF
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
2
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER Soil organic carbon Temporal variation Vegetation aboveground biomass Yellow river source region
下载PDF
Impacts of climate change on glacial water resources and hydrological cycles in the Yangtze River source region,the Qinghai-Tibetan Plateau,China:A Progress Report 被引量:2
3
作者 YongPing Shen GuoYa Wang +2 位作者 GenXu Wang JianChen Pu Xin Wang 《Research in Cold and Arid Regions》 2009年第6期475-495,共21页
The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R... The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin. 展开更多
关键词 climate change glacial water resources hydrological cycles the Yangtze river Source Region
下载PDF
Influencing factors of water resources in the source region of the Yellow River 被引量:7
4
作者 CHANG Guogang LI Lin +3 位作者 ZHU Xide WANG Zhenyu XIAO Jianshe LI Fengxia 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期131-140,共10页
Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing ... Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing trends of surface water resources, climate and frozen ground and reveals their causes. Results show that there exist frequent fluctuations from high to low water flow in the 51-year period. In general, the discharge has shown a de- clining trend in the 51 years especially since the 1990s. The annual distribution shows one peak which, year on year is getting smaller. (1) Precipitation has a significant and sustained influence on discharge. (2) A sharp rise of temperature resulted in the increase of evaporation and the decrease of discharge, which has a greater effect than on ice-snow melting. (3) Frozen ground tends to be degraded markedly. There is a significant positive correlation be- tween the permafrost thickness and the discharge. (4) Evaporation rates are significantly increasing, leading to the decrease of discharge. 70% of the discharge reduction resulted from climate change, and the remaining 30% may have been caused by human activities. 展开更多
关键词 surface water resources climate change frozen ground the source region of the Yellow river
下载PDF
Dataset of Comparative Observations for Land Surface Processes over the Semi-Arid Alpine Grassland against Alpine Lakes in the Source Region of the Yellow River 被引量:2
5
作者 Xianhong MENG Shihua LYU +13 位作者 Zhaoguo LI Yinhuan AO Lijuan WEN Lunyu SHANG Shaoying WANG Mingshan DENG Shaobo ZHANG Lin ZHAO Hao CHEN Di MA Suosuo LI Lele SHU Yingying AN Hanlin NIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1142-1157,共16页
Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot... Thousands of lakes on the Tibetan Plateau(TP) play a critical role in the regional water cycle, weather, and climate. In recent years, the areas of TP lakes underwent drastic changes and have become a research hotspot. However, the characteristics of the lake-atmosphere interaction over the high-altitude lakes are still unclear, which inhibits model development and the accurate simulation of lake climate effects. The source region of the Yellow River(SRYR) has the largest outflow lake and freshwater lake on the TP and is one of the most densely distributed lakes on the TP. Since 2011,three observation sites have been set up in the Ngoring Lake basin in the SRYR to monitor the lake-atmosphere interaction and the differences among water-heat exchanges over the land and lake surfaces. This study presents an eight-year(2012–19), half-hourly, observation-based dataset related to lake–atmosphere interactions composed of three sites. The three sites represent the lake surface, the lakeside, and the land. The observations contain the basic meteorological elements,surface radiation, eddy covariance system, soil temperature, and moisture(for land). Information related to the sites and instruments, the continuity and completeness of data, and the differences among the observational results at different sites are described in this study. These data have been used in the previous study to reveal a few energy and water exchange characteristics of TP lakes and to validate and improve the lake and land surface model. The dataset is available at National Cryosphere Desert Data Center and Science Data Bank. 展开更多
关键词 field observation dataset lake-atmosphere interaction energy and water exchanges the source region of the Yellow river Tibetan Plateau
下载PDF
Large-scale characteristics of thermokarst lakes across the source area of the Yellow River on the Qinghai-Tibetan Plateau
6
作者 LIU Wen-hui ZHOU Guang-hao +5 位作者 LIU Hai-rui LI Qing-peng XIE Chang-wei LI Qing ZHAO Jian-yun ZHANG Qi 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1589-1604,共16页
As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),pe... As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),permafrost degradation has accelerated since the 1980s,and numerous thermokarst lakes have been discovered.In this paper,we use Sentinel-2 images to extract thermokarst lake boundaries and perform a regional-scale study on their geometry across the permafrost region in the SAYR.We also explored the spatiotemporal variations and potential drivers from the perspectives of the permafrost,climate,terrain and vegetation conditions.The results showed that there were 47,518 thermokarst lakes in 2021 with a total area of 190.22×106 m^(2),with an average size of 4,003.3 m^(2).The 44,928 ponds(≤10,000 m^(2))predominated the whole lake number(94.1%)but contributed to a small portion of the total lake area(28.8%).With 2,590 features(5.9%),small-sized(10,000 to 100,000 m^(2))and large-sized lakes(>100,000 m^(2))constituted up to 71.2%of the total lake area.Thermokarst lakes developed more significantly in warm permafrost regions than in cold permafrost areas;74.1%of lakes with a total area of 119.6×106 m^(2)(62.9%),were distributed in warm permafrost regions.Most thermokarst lakes were likely to develop within the elevation range of 4,500~4,800 m,on flat terrain(slope<10°),on SE and S aspects and in alpine meadow areas.The thermokarst lakes in the study region experienced significant shrinkage between 1990 and 2021,characterized by obvious lake drainage;the lake numbers decreased by 5418(56.1%),with a decreasing area of 58.63×106 m^(2)(49.0%).This shrinkage of the thermokarst lake area was attributable mainly to the intensified degradation of rich-ice permafrost thawing arising from continued climate warming,despite the wetting climatic trend. 展开更多
关键词 Thermokarst lake Spatial characteristic Influencing factor Source area of the Yellow river
下载PDF
Diversity analysis of soil dematiaceous hyphomycetes from the Yellow River source area:Ⅰ 被引量:5
7
作者 Hao-qin PAN Jin-feng YU Yue-ming WU Tian-yu ZHANG Hong-feng WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第10期829-834,共6页
Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then t... Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then the co-relationship between genus species of soil dematiaceous hyphomycetes and ecosystem-types was analyzed. The results show that the amount and species distribution of soil dematiaceous hyphomycetes had an obvious variability in different ecosystem-types, and that the dominant genus species varied in the eight ecosystem-types studied, with Cladosporium being the dominant genus in seven of the eight ecosystem-types except wetland. The index of species diversity varied in different ecosystem-types. The niche breadth analysis showed that Cladosporium had the highest niche breadth and distributed in all ecosystem-types, while the genera with a narrow niche breadth distributed only in a few ecosystem-types. The results of niche overlap index analysis indicated that Stachybotrys and Torula, Doratomyces and Scolecobasidium, Cladosporium and Chrysosporium had a higher niche overlap, whereas Arthrinium and Gliomastix, Phialophora and Doratomyces, Oidiodendron and Ulocladium had no niche overlap. 展开更多
关键词 Yellow river source area ECOSYSTEMS Fungal species diversity Soil dematiaceous hyphomycetes Niche breadth Niche overlap
下载PDF
Changes in the depths of seasonal freezing and thawing and their effects on vegetation in the Three-River Headwater Region of the Tibetan Plateau 被引量:4
8
作者 WANG Rui DONG Zhi-bao ZHOU Zheng-chao 《Journal of Mountain Science》 SCIE CSCD 2019年第12期2810-2827,共18页
Frozen ground degradation plays an important role in vegetation growth and activity in high-altitude cold regions.This study estimated the spatiotemporal variations in the active layer thickness(ALT)of the permafrost ... Frozen ground degradation plays an important role in vegetation growth and activity in high-altitude cold regions.This study estimated the spatiotemporal variations in the active layer thickness(ALT)of the permafrost region and the soil freeze depth(SFD)in the seasonally frozen ground region across the Three Rivers Source Region(TRSR)from 1980 to 2014 using the Stefan equation,and differentiated the effects of these variations on alpine vegetation in these two regions.The results showed that the average ALT from 1980 to 2014 increased by23.01 cm/10 a,while the average SFD decreased by 3.41 cm/10 a,and both changed intensively in the transitional zone between the seasonally frozen ground and permafrost.From 1982-2014,the increase in the normalized difference vegetation index(NDVI)and the advancement of the start of the vegetation growing season(SOS)in the seasonally frozen ground region(0.0078/10 a,1.83 d/10 a)were greater than those in the permafrost region(0.0057/10 a,0.39 d/10 a).The results of the correlation analysis indicated that increases in the ALT and decreases in the SFD in the TRSR could lead to increases in the NDVI and advancement of the SOS.Surface soil moisture played a critical role in vegetation growth in association with the increasing ALT and decreasing SFD.The NDVI for all vegetation types in the TRSR except for alpine vegetation showed an increasing trend that was significantly related to the SFD and ALT.During the study period,the general frozen ground conditions were favorable to vegetation growth,while the average contributions of ALT and SFD to the interannual variation in the NDVI were greater than that of precipitation but less than that of temperature. 展开更多
关键词 Frozen soil depth Active layer thickness Alpine vegetation Climate warming Three rivers Source Region
下载PDF
Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000 被引量:22
9
作者 LIU Linshan ZHANG Yili +1 位作者 BAI Wanqi YAN Jianzhong 《Journal of Geographical Sciences》 SCIE CSCD 2006年第2期131-142,共12页
The source region of the Yellow River is located in the middle east of the Tibetan Plateau in northwest China. The total area is about 51,700 km^2, mainly covered by grassland (79%), unused land (16%) and water ... The source region of the Yellow River is located in the middle east of the Tibetan Plateau in northwest China. The total area is about 51,700 km^2, mainly covered by grassland (79%), unused land (16%) and water (4%). The increasing land utilization in this area has increased the risk of environmental degradation. The land use/cover data (1985 and 2000) provided by the Data Center of Resources and Environment in the Chinese Academy of Sciences were used to analyze the land cover change in the source region of the Yellow River. DEM (1:250,000) data, roads and settlement data were used to analyze the spatial characteristics of grasslands degradation. The ArcGIS 9 software was used to convert data types and do the overlay, reclassification and zonal statistic analysis. Results show that grassland degradation is the most important land cover change in the study area, which occupied 8.24% of the region's total area. Human activities are the main causes of the grassland degradation in the source region of the Yellow River: 1) the degradation rate is higher on the sunny slope than on the shady slope; 2) the grassland degradation rate decreases with an increase in the elevation, and it has a correlation coefficient of -0.93; 3) the nearer to the settlements the grassland is, the higher the degradation rate. Especially within a distance range of 12 km to the settlements, the grassland degradation rate is highly related with the distance, with a coefficient of -0.99; and 4) in the range of 4 km, the degradation rate decreases with the increase of distance to the roads, with a correlation coefficient of -0.98. Besides some physical factors, human activities have been the most important driving forces of the grassland degradation in the source region of the Yellow River since 1985. To resolve the degradation problems, population control is essential, and therefore, it can reduce the social demand of livestock products from the grassland. To achieve sustainable development, it needs to improve the management of grassland ecosystem. 展开更多
关键词 source region of the Yellow river grassland degradation slope aspect ELEVATION DISTANCE SETTLEMENT ROADS
下载PDF
Impacts of Climatic Factors on Runoff Coefficients in Source Regions of the Huanghe River 被引量:12
10
作者 CHEN Liqun LIU Changming +1 位作者 LI Yanping WANG Guoqiang 《Chinese Geographical Science》 SCIE CSCD 2007年第1期47-55,共9页
Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which ... Runoff coefficients of the source regions of the Huanghe River in 1956-2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had attracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual precipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is -3.9℃, temperature is the main factor influencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area between Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients become insignificant. 展开更多
关键词 source regions of the Huanghe river runoff coefficient PRECIPITATION TEMPERATURE
下载PDF
Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau,China 被引量:14
11
作者 MA Qiang JIN Hui-Jun +4 位作者 Victor F.BENSE LUO Dong-Liang Sergey S.MARCHENKO Stuart A.HARRIS LAN Yong-Chao 《Advances in Climate Change Research》 SCIE CSCD 2019年第4期225-239,共15页
Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the T... Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the Tanag hydrological station)on the northeastern Qinghai-Tibet Plateau,West China.How and to what extent does the degrading permafrost change the flow in the SAYR?According to seasonal regimes of hydrological processes,the SAYR is divided intofour sub-basins with varied permafrost extents to detect impacts of permafrost degradation on the Yellow River streamflow.Results show that permafrost degradation may have released appreciable meltwater for recharging groundwater.The potential release rate of ground-ice melt-water in the Sub-basin 1(the headwater area of the Yellow River(HAYR),above the Huangheyan hydrological station)is the highest(5.6 mm per year),contributing to 14.4%of the annual Yellow River streamflow at Huangheyan.Seasonal/intra-and annual shifts of streamflow,a possible signal for the marked alteration of hydrological processes by permafrost degradation,is observed in the HAYR,but the shifts are minor in other sub-basins in the SAYR.Improved hydraulic connectivity is expected to occur during and after certain degrees of permafrost degradation.Direct impacts of permafrost degradation on the annual Yellow River streamflow in the SAYR at Tanag,i.e.,from the meltwater of ground-ice,is estimated at 4.9%that of the annual Yellow River discharge at Tanag,yet with a high uncertainty,due to neglecting of the improved hydraulic connections from permafrost degradation and the flow generation conditions for the ground-ice meltwater.Enhanced evapotranspiration,substantial weakening of the Southwest China Autumn Rain,and anthropogenic disturbances may largely account for the declined streamflow in the SAYR. 展开更多
关键词 Streamflow Warming climate Permafrost degradation Streamflow patterns Source area of Yellow river(SAYR)
下载PDF
Variations of precipitation characteristics during the period 1960–2014 in the Source Region of the Yellow River,China 被引量:7
12
作者 Mudassar IQBAL WEN Jun +2 位作者 WANG Shaoping TIAN Hui Muhammad ADNAN 《Journal of Arid Land》 SCIE CSCD 2018年第3期388-401,共14页
Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a c... Precipitation, a natural feature of weather systems in the Earth, is vitally important for the environment of any region. Under global climate change condition, the characteristics of precipitation have changed as a consequence of enhanced global hydrological cycle. The source region of the Yellow River(SRYR), locating within the Qinghai-Tibet Plateau, is sensitive to the global climate change due to its complex orography and fragile ecosystem. To understand the precipitation characteristics and its impacts on the environment in the region, we studied the characteristics of rainy days and precipitation amount of different precipitation classes, such as light(0–5 and 5–10 mm), moderate(10–15, 15–20 and 20–25 mm) and heavy(≥25 mm) rains by analyzing the precipitation data of typical meteorological stations in the SRYR during the period 1961–2014, as well as the trends of persistent rainfall events and drought events. Results showed that annual average precipitation in this area had a non-significant(P〉0.05) increasing trend, and 82.5% of the precipitation occurred from May to September. Rainy days of the 0–5 mm precipitation class significantly decreased, whereas the rainy days of 5–10, 10–15, and 20–25 mm precipitation classes increased and that of ≥25 mm precipitation class decreased insignificantly. The persistent rainfall events of 1-or 2-day and more than 2-day showed an increasing trend, with the 1-or 2-day events being more frequent. Meanwhile, the number of short drought periods(≤10 days) increased while long drought periods(〉10 days) decreased. Since the 0–5 mm precipitation class had a huge impact on the grasslands productivity; the 5–10, 10–15, and 20–25 mm precipitation classes had positive effects on vegetation which rely on the deep soil water through moving nutrients and water into the root zone of these vegetation or through the plant-microbe interactions; the ≥25 mm precipitation class contributed to the floods; and more persistent rainfall events and fewer long drought events inferred positive effects on agriculture. Thus, these results indicate grassland degradation, less risk of floods, and the upgrading impact of climate change on agriculture. This study may provide scientific knowledge for policymakers to sustain the eco-environmental resources in the SYSR. 展开更多
关键词 precipitation characteristics climate change ECOSYSTEM water resources VEGETATION source region of theYellow river
下载PDF
Impact of land-cover and climate changes on runoff of the source regions of the Yellow River 被引量:6
13
作者 李道峰 田英 +1 位作者 刘昌明 HAO Fanghua 《Journal of Geographical Sciences》 SCIE CSCD 2004年第3期330-338,共9页
After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from t... After dividing the source regions of the Yellow River into 38 sub-basins, thepaper made use of the SWAT model to simulate streamflow with validation and calibration of theobserved yearly and monthly runoff data from the Tangnag hydrological station, and simulationresults are satisfactory. Five land-cover scenario models and 24 sets of temperature andprecipitation combinations were established to simulate annual runoff and runoff depth underdifferent scenarios. The simulation shows that with the increasing of vegetation coverage annualrunoff increases and evapotranspiration decreases in the basin. When temperature decreases by 2℃and precipitation increases by 20%, catchment runoff will increase by 39.69%, which is the largestsituation among all scenarios. 展开更多
关键词 distributed hydrological model source regions of the Yellow river scenariosimulation changing environment
下载PDF
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data 被引量:8
14
作者 Min XU BaiSheng YE +2 位作者 QiuDong ZHAO ShiQing ZHANG Jiang WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期384-395,共12页
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents... Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff. 展开更多
关键词 actual evaporation GRACE satellite data water storage change water balance equation source region of the Yellow river
下载PDF
Different Responses of Vegetation to Frozen Ground Degradation in the Source Region of the Yellow River from 1980 to 2018 被引量:4
15
作者 WANG Rui DONG Zhibao ZHOU Zhengchao 《Chinese Geographical Science》 SCIE CSCD 2020年第4期557-571,共15页
Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen... Frozen ground degradation under a warming climate profoundly influences the growth of alpine vegetation in the source region of the Qinghai-Tibet Plateau.This study investigated spatiotemporal variations in the frozen ground distribution,the active layer thickness(ALT)of permafrost(PF)soil and the soil freeze depth(SFD)in seasonally frozen soil from 1980 to 2018 using the temperature at the top of permafrost(TTOP)model and Stefan equation.We compared the effects of these variations on vegetation growth among different frozen ground types and vegetation types in the source region of the Yellow River(SRYR).The results showed that approximately half of the PF area(20.37%of the SRYR)was projected to degrade into seasonally frozen ground(SFG)during the past four decades;furthermore,the areal average ALT increased by 3.47 cm/yr,and the areal average SFD decreased by 0.93 cm/yr from 1980 to 2018.Accordingly,the growing season Normalized Difference Vegetation Index(NDVI)presented an increasing trend of 0.002/10 yr,and the increase rate and proportion of areas with NDVI increase were largest in the transition zone where PF degraded to SFG(the PF to SFG zone).A correlation analysis indicated that variations in ALT and SFD in the SRYR were significantly correlated with increases of NDVI in the growing season.However,a rapid decrease in SFD(<-1.4 cm/10 yr)could have reduced the soil moisture and,thus,decreased the NDVI.The NDVI for most vegetation types exhibited a significant positive correlation with ALT and a negative correlation with SFD.However,the steppe NDVI exhibited a significant negative correlation with the SFD in the PF to SFG zone but a positive correlation in the SFG zone,which was mainly limited by water condition because of different change rates of the SFD. 展开更多
关键词 PERMAFROST seasonally frozen ground vegetation dynamics climate change source region of the Yellow river
下载PDF
Adaptation Management of Mountain Tourism Service: The Case of the Source Regions of the Yangtze and Yellow River 被引量:6
16
作者 FANG Yiping QIN Dahe +1 位作者 DING Yongjian YANG Jianping 《Journal of Mountain Science》 SCIE CSCD 2009年第3期299-310,共12页
Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improvi... Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improving the living conditions of rural societies. As mountain tourism service research is a professional field with several disciplines involved, a multi-disciplinary management pIatform is needed and it facilitates participation in sustainable mountain development by diverse stakeholders. With the source regions of the Yangtze and the Yellow River as a case study, this paper presents a conceptual framework for an adaptation management of mountain tourism services according to technical, policy, social and economic dimensions. The framework is based on a vulnerability assessment of mountain ecosystems, and can serve as a reference for the development of tourism service in other mountain areas. 展开更多
关键词 adaptation management mountain tourism service (MTS) source regions of Yangtze and Yellow rivers China
下载PDF
The Effects of Natural Capital Protection on Pastoralist's Livelihood and Management Implication in the Source Region of the Yellow River, China 被引量:2
17
作者 Fang Yi-ping 《Journal of Mountain Science》 SCIE CSCD 2013年第5期885-897,共13页
The interaction among different livelihood capitals is a key to generate a deeper understanding of the livelihood sustainability.In this paper,we use net income per capita(economic capital),meat and milk production pe... The interaction among different livelihood capitals is a key to generate a deeper understanding of the livelihood sustainability.In this paper,we use net income per capita(economic capital),meat and milk production per capita(physical capital),and areas of fenced pasture,livestock shelter,grassland rodent control and planted grassland(physical capital) as proxy indicators of livelihood promotion,livelihood provision,and livelihood protection respectively.By developing a correlation model between pastoralists' livelihood protection and improvement,we found that(1) there is a statistically significant correlation between the pastoralists' livelihood protection and promotion;(2) based on the maximum effect of pastoralists' livelihood promotion and provision,there is a benchmark in the effect of the intervention intensity of livelihood capital(grassland resource protection) on livelihood improvement;(3) on basis of two indicators,i.e.net income per capita and meat production per capita,the reasonable scales of fenced pasture,livestock shelter and planted grassland are less than 843,860 and 46 thousand hectares(hm2) per year respectively.With the marginal effect of livelihood protection,moderately decreased areas of fenced pasture and planted grassland,and increased area of livestock shelter is a critical to ensure pastoralist's livelihood sustainability. 展开更多
关键词 Regional sustainability Natural capitalprotection Pastoralist's livelihood Source Region ofthe Yellow river
下载PDF
Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects 被引量:3
18
作者 Liang Zhu Ming-nan Yang +3 位作者 Jing-tao Liu Yu-xi Zhang Xi Chen Bing Zhou 《Journal of Groundwater Science and Engineering》 2022年第4期322-334,共13页
As an important water source and ecological barrier in the Yellow River Basin,the source region of the Yellow River(above the Huangheyan Hydrologic Station)presents a remarkable permafrost degradation trend due to cli... As an important water source and ecological barrier in the Yellow River Basin,the source region of the Yellow River(above the Huangheyan Hydrologic Station)presents a remarkable permafrost degradation trend due to climate change.Therefore,scientific understanding the effects of permafrost degradation on runoff variations is of great significance for the water resource and ecological protection in the Yellow River Basin.In this paper,we studied the mechanism and extent of the effect of degrading permafrost on surface flow in the source region of the Yellow River based on the monitoring data of temperature and moisture content of permafrost in 2013–2019 and the runoff data in 1960–2019.The following results have been found.From 2013 to 2019,the geotemperature of the monitoring sections at depths of 0–2.4 m increased by 0.16°C/a on average.With an increase in the thawing depth of the permafrost,the underground water storage space also increased,and the depth of water level above the frozen layer at the monitoring points decreased from above 1.2 m to 1.2–2 m.64.7%of the average multiyear groundwater was recharged by runoff,in which meltwater from the permafrost accounted for 10.3%.Compared to 1960-1965,the runoff depth in the surface thawing period(from May to October)and the freezing period(from November to April)decreased by 1.5 mm and 1.2 mm,respectively during 1992–1997,accounting for 4.2%and 3.4%of the average annual runoff depth,respectively.Most specifically,the decrease in the runoff depth was primarily reflected in the decreased runoff from August to December.The permafrost degradation affects the runoff within a year by changing the runoff generation,concentration characteristics and the melt water quantity from permafrost,decreasing the runoff at the later stage of the permafrost thawing.However,the permafrost degradation has limited impacts on annual runoff and does not dominate the runoff changes in the source region of the Yellow River in the longterm. 展开更多
关键词 RUNOFF Permafrost degradation Climate change Source region of the Yellow river
下载PDF
The Impacts of Permafrost Change on NPP and Implications:A Case of the Source Regions of Yangtze and Yellow Rivers 被引量:9
19
作者 FANG Yiping QIN Dahe +2 位作者 DING Yongjian YANG Jianping XU Keyan 《Journal of Mountain Science》 SCIE CSCD 2011年第3期437-447,共11页
This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolatin... This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development. 展开更多
关键词 The source regions of Yangtze and Yellow rivers PERMAFROST Ground temperature (GT) Net primary productivity (NPP) Policy adaptation
下载PDF
Ice-wedge Pseudomorphs Showing Climatic Change Since the Late Pleistocene in the Source Area of the Yellow River, Northeast Tibet 被引量:3
20
作者 CHENG Jie ZHANG Xujiao +4 位作者 TIAN Mingzhong YU Wenyang YU Jiangkuan TANG Dexiang YUE Jianwei 《Journal of Mountain Science》 SCIE CSCD 2005年第3期193-201,共9页
The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are r... The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed. 展开更多
关键词 Ice-wedge pseudomorph PALEOCLIMATE Last Glacial Age MEGATHERMAL the source area of the Yellow river Tibetan Plateau
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部