Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal...Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.展开更多
Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane...Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane(HBCDD).The levels of TBBPA and HBCDD in sediments ranged from not detected(nd) to 6.14 ng/g dry weight(dw) and nd to 0.42 ng/g dw.TBBPA concentrations in marine sediments were substantially higher than HBCDD.The concentrations of TBBPA and HBCDD in the ZRE sediments were significantly greater than those in the SCS.α-HBCDD(48.7%) and γ-HBCDD(46.2%) were the two main diastereoisomers of HBCDD in sediments from the ZRE,with minor contribution of β-HBCDD(5.1%).HBCDD were only found in one sample from the northern SCS.The enantiomeric fraction of α-HBCDD in sediments from the ZRE was obviously greater than 0.5,indicating an accumulation of(+)-α-HBCDD.The enantiomers of HBCDD were not measured in sediments from the SCS.This work highlighted the environmental behaviors of TBBPA and HBCDD in marine sediments.展开更多
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ...Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.展开更多
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (...Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.展开更多
Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblag...Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.展开更多
Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inor...Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, and vegetation is important in these processes. To study the effects of vegetation type on surface elevation change, we measured surface accretion and elevation change from 2011 to 2016 using rod surface elevation table and feldspar marker horizon method (RSET-MH) in two Phragmites and two Suaeda marshes in the Liaohe River Delta. The Phragmites marshes exhibited higher rates of surface accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.78 mm/yr and 9.26 mm/yr and surface accretion rates at 17.56 mm/yr and 17.88 mm/yr, respectively. At the same time, the two Suaeda marsh sites had average surface elevation change rates at 5.77 mmJyr and 5.91 mm/yr and surface accretion rates at 13.42 mm/yr and 14.38 mm/yr, respectively. The elevation change rates in both the Phragmites marshes and the Suaeda marshes in the Liaohe River Delta could keep pace and even continue to gain elevation relative to averaged sea level rise in the Bohai Sea reported by the 2016 State Oceanic Administration, Peo- ple's Republic of China projection (2.4-5.5 mm/yr) in current situations. Our data suggest that vegetation is important in the accretionary processes and vegetation type could regulate the wetland surface elevation. However, the vulnerability of coastal wetlands in the Liaohe River Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery, especially for the Suaeda marshes.展开更多
Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The...Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.展开更多
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow acros...The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea展开更多
Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is us...Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is used to adaptively decompose the sea level time series in order to extract the secular trend component. Then the linear relationship between the global mean sea level (GMSL) change and the Zhujiang (Pearl) River Delta (PRD) sea level change is calculated: an increase of 1.0 m in the GMSL corresponds to a 1.3 m (uncertainty interval from 1.25 to 1.46 m) increase in the PRD. Based on this relationship and the GMSL rise projected by the Coupled Model Intercomparison Project Phase 5 under three greenhouse gas emission scenarios (representative concentration pathways, or RCPs, from low to high emission scenarios RCP2.6, RCP4.5, and RCP8.5), the PRD sea level is calculated and projected for the period 2006-2100. By around the year 2050, the PRD sea level will rise 0.29 (0.21 to 0.40) m under RCP2.6, 0.31 (0.22 to 0.42) m under RCP4.5, and 0.34 (0.25 to 0.46) m under RCP8.5, respectively. By 2100, it will rise 0.59 (0.36 to 0.88) m, 0.71 (0.47 to 1.02) m, and 1.0 (0.68 to 1.41) m, respectively. In addition, considering the extreme value of relative sea level due to land subsidence (i.e., 0.20 m) and that obtained from intermonthly variability (i.e., 0.33 m), the PRD sea level will rise 1.94 m by the year 2100 under the RCP8.5 scenario with the upper uncertainty level (i.e., 1.41 m). Accordingly, the potential submerged area is 8.57x103 km2 for the PRD, about 1.3 times its present area.展开更多
The Hanjiang Formation of Langhian age (middle Miocene) in the Pearl River Mouth Basin (PRMB), South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations, which form one of...The Hanjiang Formation of Langhian age (middle Miocene) in the Pearl River Mouth Basin (PRMB), South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations, which form one of the potential reservoirs of the basin. To improve stratigraphic resolutions for hydrocarbon prospecting and exploration in the basin, the present study undertakes spectral analysis of high-resolution natural gamma-ray (NGR) well-logging record to determine the dominant frequency components and test whether Milankovitch orbital signals are recorded in rhythmic successions. Analytical results indicate the orbital cycles of precession (~19 ka and ~23 ka), obliquity (-41 ka), and eccentricity (~100 ka and --405 ka), which provide the strong evidence for astronomically driven climate changes in the rhythmic alternation successions. Within biochronological constraint, a high-resolution astronomical timescale was constructed through the astronomical tuning of the NGR record to recent astronomically calculated variation of Earth's orbit. The astronomically tuned timescale can be applied to calculate astronomical ages for the geological events and bioevents recognized throughout the period. The first downhole occurrences of foraminifers Globorotalia peripheroronda and Globigerinoides sicanus are dated at 14.546 Ma and 14.919 Ma, respectively, which are slightly different from earlier estimates in the South China Sea. When compared with the global sea-level change chart, the astronomical estimate for the sequences recognized based on microfossil distributions have the same end time but the different initiation time. This is probably due to the local or regional tectonic activities superimposed on eustatic rise which postponed the effect of global sea-level rising. Astronomical timescale also resolves the depositional evolution history for the Langhian Stage (middle Miocene) with a variation that strongly resembles that of Earth's orbital eccentricity predicted from 13.65 Ma to 15.97 Ma. We infer that the main factor controlling the variability of the sedimentation rate in the Hanjiang Formation is related to the ^-405-ka-period eccentricity.展开更多
Transparent exopolymer particles(TEPs)are ubiquitous throughout the oceans,and their sedimentation is considered an efficient biological carbon sink pathway.To investigate the role of coastal TEPs in sinking carbon fr...Transparent exopolymer particles(TEPs)are ubiquitous throughout the oceans,and their sedimentation is considered an efficient biological carbon sink pathway.To investigate the role of coastal TEPs in sinking carbon from the upper layer,samples were collected in the spring and summer of 2011 in the Changjiang River(Yangtze River)Estuary,a typical coastal water.The concentrations and sinking rates of TEPs were measured,and potential sedimentation flux of TEPs was estimated.TEPs concentrations ranged from 40.00μg/L to 1040.00μg/L(mean=(209.70±240.93)μg/L)in spring and 56.67μg/L to 1423.33μg/L(mean=(433.33±393.02)μg/L)in summer,and they were higher at bloom stations than at non-bloom stations during both cruises.A significant positive correlation between TEPs concentration and chlorophyll a(Chl a)concentration was detected,suggesting that phytoplankton was the primary source of TEPs in this area.TEPs sinking rates ranged from 0.08 m/d to 0.57 m/d with a mean of(0.28±0.14)m/d in spring and 0.10 m/d to 1.08 m/d with a mean of(0.34±0.31)m/d in summer.The potential sedimentation flux of TEP-C ranged from 4.95 mg/(m2·d)to 29.40 mg/(m2·d)with a mean of(14.66±8.83)mg/(m2·d)in spring and 6.80 mg/(m2·d)to 30.45 mg/(m2·d)with a mean of(15.71±8.73)mg/(m2·d)in summer,which was^17.81%to 138.27%(mean=65.15%±31.75%)of sedimentation flux of phytoplankton cells in the study area.Due to the increase of TEPs concentrations and their sinking rates,sedimentation fluxes of TEPs at the bloom station were obviously higher than at the non-bloom station during both cruises.This study indicates that TEPs serve as a carbon sink in the Changjiang River Estuary,especially during bloom events,and their sedimentation should be taken into account when we study the carbon sedimentation in the coastal sea.展开更多
The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Chang^iang (Yangtze) River, China...The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Chang^iang (Yangtze) River, China. In total, 267 diatom taxa and two silicoflagellate species were identified from the sediments. The spatial variations in abundance and diversity were classified into three distinct geographic patterns using Q mode clustering: a south-north geographic pattern, a coastal-offshore pattern and a unique pattern in the Changjiang River mouth. The south-north geographic pattern was related to the spatial variations in sea temperature. Coscinodiscus oculatus, a warm-water species, indicated these variations by a gradual decrease in abundance from the south to the north. The coastal-offshore pattern was in response to the spatiaJ variations in salinity. Cyclotella stylorum, Actinocyclus ehrenbergii and Dictyocha messanensis, the dominant brackish species in coastal waters, significantly decreased at the isobaths of approximately 30 m, where the salinity was higher than 31. Paralia sulcata and Podosira stelliger indicated the impact of the Yellow Sea Warm Current in the central Yellow Sea. The unique pattern in the Changjiang River mouth showed the highest species diversity but lower abundance, apparently because: freshwater input can significantly increase the proportion of brackish species; nutrients can supply the growth ofphytoplankton; and high sedimentation rates can dilute the mierofossil abundance in the sediments. Our results show that an integration of environmental factors (e.g., nutrient levels, sedimentation rate, sea temperature, salinity and water depth) determined the spatial characteristics of the siliceous micro fossils in the surface sediments.展开更多
Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geoc...Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/A1203, Cr/A1203, Ni/A1203 and Se/A1203 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.展开更多
Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the pe...Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the period of September 2015 to August 2018.First,we found that the SSS from SMAP is more accurate than soil moisture and ocean salinity(SMOS)mission observation when comparing with the in situ observations.Then,the SSS signature of the Changjiang River freshwater was analyzed using SMAP data and the river discharge data from the Datong hydrological station.The results show that the SSS around the Changjiang River Estuary is significantly lower than that of the open ocean,and shows significant seasonal variation.The minimum value of SSS appears in July and maximum SSS in December.The root mean square difference of daily SSS between SMAP observation and in situ observation is around 3 in both summer and winter,which is much lower than the annual range of SSS variation.In summer,the diffusion direction of the Changjiang River freshwater depicted by SSS from SMAP is consistent with the path of freshwater from in situ observation,suggesting that SMAP observation may be used in coastal seas in monitoring the diffusion and advection of freshwater discharge.展开更多
Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two...Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two tide gauge stations in Macao and Hong Kong. Extremes in the original sea level records (daily higher high water heights) and in tidal residuals with and without the 18.6-year nodal modulation are investigated separately. Thresholds for defining extreme sea levels are calibrated based on extreme value theory. Extreme events are then modeled by peaks-over-threshold models. The model applied to extremes in original sea level records does not include modeling of their durations, while a geometric distribution is added to model the duration of extremes in tidal residuals. Realistic modeling results are recommended in all stationary models. Parametric trends of extreme sea level records are then introduced to nonstationary models through a generalized linear model framework. The result shows that, in recent decades, since the 1960s, no significant trends can be found in any type of extreme at any station, which may be related to a reduction in the influence of tropical cyclones in the region. For the longer-term record since the 1920s at Macao, a regime shift of tidal amplitudes around the 1970s may partially explain the diverse trend of extremes in original sea level records and tidal residuals.展开更多
Our work was aimed to study the phytoplankton communities in two coastal sites placed in Natural Reserve “Lake of Tarsia-Mouth of river Crati” in Northern Ionian Sea-Calabria (Italy). This zone represents a wetland ...Our work was aimed to study the phytoplankton communities in two coastal sites placed in Natural Reserve “Lake of Tarsia-Mouth of river Crati” in Northern Ionian Sea-Calabria (Italy). This zone represents a wetland area of high natural interest populated by different organisms (animals and plants) living in a transitional ecosystem characterized by a great biodiversity. The sampling was performed in two different seasonal periods (summer and autumn 2012) and in two different sites (marine site vs fluvial one). Different algal genera/species were recognized and analyzed by Utermohl inverted microscope method and also qualitative and quantitative measures of biomass were performed. The results showed that the dominant group was the Diatoms with exclusive species in such periods in both the sampling sites;we also observed the presence of genera and/or species of potentially toxic algae (Pseudo-nitzschia sp., Alexandrium taylori, Prorocentrum micans, Skeletonema sp.), mostly in summer. Complessively, the phytoplankton biomass was always higher in marine site than in the fluvial site. The results were also processed considering the context of the chemical-physical parameters (such as temperature, pH, salinity, nutrients). The high concentration of the nutrients N and P in such periods indicated a state of meso-eutrophic waters both in the proximity of river site as well as in the marine zone. The data represent the first contribution to the knowledge of the phytoplankton structure in this area, which results in a very variable environment with a high recovery capacity.展开更多
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field d...The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.展开更多
Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangt...Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.展开更多
The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-...The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.展开更多
In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai...In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai Sea as an examPle,the authors studied identification marks,distribution Pattern and scale of Point bar based on coring,logging and dynamic data. The results show that the length of Point bar and the width of lateral accretion body are 713-911 m and 71-111m,resPectively;the diP angle and the thickness of lateral accretion bedding are 3. 5o-5. 9o and 0. 1-0. 5 m. The lateral accretion beddings are the key factor affecting the seePage velocity of the tracer.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.52006148 and 51976131)the Capacity Building Project of Local Institutions of Shanghai“Action Plan for Scientific and Technological”(Grant Nos.19060502200).
文摘Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.
基金The Guangdong Basic and Applied Basic Research Foundation under contract Nos 2021B1515020040 and 2021A1515011526the National Natural Science Foundation of China under contract Nos 42277246 and U2244221+1 种基金the Hainan Provincial Natural Science Foundation of China under contract No.422CXTD533the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No.2019BT02H594。
文摘Marine sediments collected from the Zhujiang(Pearl) River Estuary(ZRE) and South China Sea(SCS) were utilized to study the occurrence and spatial distribution of tetrabromobisphenol A(TBBPA) and hexabromocyclododecane(HBCDD).The levels of TBBPA and HBCDD in sediments ranged from not detected(nd) to 6.14 ng/g dry weight(dw) and nd to 0.42 ng/g dw.TBBPA concentrations in marine sediments were substantially higher than HBCDD.The concentrations of TBBPA and HBCDD in the ZRE sediments were significantly greater than those in the SCS.α-HBCDD(48.7%) and γ-HBCDD(46.2%) were the two main diastereoisomers of HBCDD in sediments from the ZRE,with minor contribution of β-HBCDD(5.1%).HBCDD were only found in one sample from the northern SCS.The enantiomeric fraction of α-HBCDD in sediments from the ZRE was obviously greater than 0.5,indicating an accumulation of(+)-α-HBCDD.The enantiomers of HBCDD were not measured in sediments from the SCS.This work highlighted the environmental behaviors of TBBPA and HBCDD in marine sediments.
基金The National Natural Science Foundation of China under contract No.42276066the Key Research and Development Program(International Science and Technology Cooperation Development Program)of Hainan Province under contract No.GHYF2022009the Youth Innovation Promotion Association of CAS under contract No.2018401.
文摘Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons.
基金The National Natural Sciences Foundation of China under contract Nos 40925017 and 40876054the Ministry of Science&Technology of P.R.China under contract Nos 2011CB409802 and 2001CB409703
文摘Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.714-1.79) #mol/L and (0.564-1.41) mmol/L, respectively. Both BSi and LSi were high ii~. tbe inshore ar- eas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the sur- face layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm exper- iments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phospho- rus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.
文摘Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0602303)National Natural Science Foundation of China(No.41501105,41620104005)Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration in Northeast Normal University(No.130028627)
文摘Rising sea levels threaten the sustainability of coastal wetlands around the globe. The ability of coastal marshes to maintain their position in the intertidal zone depends on the accumulation of both organic and inorganic materials, and vegetation is important in these processes. To study the effects of vegetation type on surface elevation change, we measured surface accretion and elevation change from 2011 to 2016 using rod surface elevation table and feldspar marker horizon method (RSET-MH) in two Phragmites and two Suaeda marshes in the Liaohe River Delta. The Phragmites marshes exhibited higher rates of surface accretion and elevation change than the Suaeda marshes. The two Phragmites marsh sites had average surface elevation change rates at 8.78 mm/yr and 9.26 mm/yr and surface accretion rates at 17.56 mm/yr and 17.88 mm/yr, respectively. At the same time, the two Suaeda marsh sites had average surface elevation change rates at 5.77 mmJyr and 5.91 mm/yr and surface accretion rates at 13.42 mm/yr and 14.38 mm/yr, respectively. The elevation change rates in both the Phragmites marshes and the Suaeda marshes in the Liaohe River Delta could keep pace and even continue to gain elevation relative to averaged sea level rise in the Bohai Sea reported by the 2016 State Oceanic Administration, Peo- ple's Republic of China projection (2.4-5.5 mm/yr) in current situations. Our data suggest that vegetation is important in the accretionary processes and vegetation type could regulate the wetland surface elevation. However, the vulnerability of coastal wetlands in the Liaohe River Delta need further assessment considering the accelerated sea level rise, the high rate of subsidence, and the declining sediment delivery, especially for the Suaeda marshes.
基金National Natural Science Foundation of China No. 49971071 Shanghai Priority Academic Discipline
文摘Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.
文摘The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea
基金The Strategic Priority Research Program of the Chinese Academy of Sciences No.XDA11010404the National Natural Science Foundation of China under contract Nos 41375096,41175079 and 41405082the Macao Meteorological and Geophysical Bureau Project under contract No.9231048
文摘Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is used to adaptively decompose the sea level time series in order to extract the secular trend component. Then the linear relationship between the global mean sea level (GMSL) change and the Zhujiang (Pearl) River Delta (PRD) sea level change is calculated: an increase of 1.0 m in the GMSL corresponds to a 1.3 m (uncertainty interval from 1.25 to 1.46 m) increase in the PRD. Based on this relationship and the GMSL rise projected by the Coupled Model Intercomparison Project Phase 5 under three greenhouse gas emission scenarios (representative concentration pathways, or RCPs, from low to high emission scenarios RCP2.6, RCP4.5, and RCP8.5), the PRD sea level is calculated and projected for the period 2006-2100. By around the year 2050, the PRD sea level will rise 0.29 (0.21 to 0.40) m under RCP2.6, 0.31 (0.22 to 0.42) m under RCP4.5, and 0.34 (0.25 to 0.46) m under RCP8.5, respectively. By 2100, it will rise 0.59 (0.36 to 0.88) m, 0.71 (0.47 to 1.02) m, and 1.0 (0.68 to 1.41) m, respectively. In addition, considering the extreme value of relative sea level due to land subsidence (i.e., 0.20 m) and that obtained from intermonthly variability (i.e., 0.33 m), the PRD sea level will rise 1.94 m by the year 2100 under the RCP8.5 scenario with the upper uncertainty level (i.e., 1.41 m). Accordingly, the potential submerged area is 8.57x103 km2 for the PRD, about 1.3 times its present area.
基金supported by Australian Research Council discovery grant(DP0770938 to ZQC)National Science and Technology Major Project (2011ZX05001-001-006)
文摘The Hanjiang Formation of Langhian age (middle Miocene) in the Pearl River Mouth Basin (PRMB), South China Sea consists of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations, which form one of the potential reservoirs of the basin. To improve stratigraphic resolutions for hydrocarbon prospecting and exploration in the basin, the present study undertakes spectral analysis of high-resolution natural gamma-ray (NGR) well-logging record to determine the dominant frequency components and test whether Milankovitch orbital signals are recorded in rhythmic successions. Analytical results indicate the orbital cycles of precession (~19 ka and ~23 ka), obliquity (-41 ka), and eccentricity (~100 ka and --405 ka), which provide the strong evidence for astronomically driven climate changes in the rhythmic alternation successions. Within biochronological constraint, a high-resolution astronomical timescale was constructed through the astronomical tuning of the NGR record to recent astronomically calculated variation of Earth's orbit. The astronomically tuned timescale can be applied to calculate astronomical ages for the geological events and bioevents recognized throughout the period. The first downhole occurrences of foraminifers Globorotalia peripheroronda and Globigerinoides sicanus are dated at 14.546 Ma and 14.919 Ma, respectively, which are slightly different from earlier estimates in the South China Sea. When compared with the global sea-level change chart, the astronomical estimate for the sequences recognized based on microfossil distributions have the same end time but the different initiation time. This is probably due to the local or regional tectonic activities superimposed on eustatic rise which postponed the effect of global sea-level rising. Astronomical timescale also resolves the depositional evolution history for the Langhian Stage (middle Miocene) with a variation that strongly resembles that of Earth's orbital eccentricity predicted from 13.65 Ma to 15.97 Ma. We infer that the main factor controlling the variability of the sedimentation rate in the Hanjiang Formation is related to the ^-405-ka-period eccentricity.
基金Foundation item:The National Key Research and Development Project of China under contract No.2019YFC1407805the National Natural Science Foundation of China under contract Nos 41876134,91751202,31700425,41676112 and 41276124+1 种基金the Tianjin 131 Innovation Team Program under contract No.20180314the Changjiang Scholar Program of Chinese Ministry of Education(T2014253)to Jun Sun.
文摘Transparent exopolymer particles(TEPs)are ubiquitous throughout the oceans,and their sedimentation is considered an efficient biological carbon sink pathway.To investigate the role of coastal TEPs in sinking carbon from the upper layer,samples were collected in the spring and summer of 2011 in the Changjiang River(Yangtze River)Estuary,a typical coastal water.The concentrations and sinking rates of TEPs were measured,and potential sedimentation flux of TEPs was estimated.TEPs concentrations ranged from 40.00μg/L to 1040.00μg/L(mean=(209.70±240.93)μg/L)in spring and 56.67μg/L to 1423.33μg/L(mean=(433.33±393.02)μg/L)in summer,and they were higher at bloom stations than at non-bloom stations during both cruises.A significant positive correlation between TEPs concentration and chlorophyll a(Chl a)concentration was detected,suggesting that phytoplankton was the primary source of TEPs in this area.TEPs sinking rates ranged from 0.08 m/d to 0.57 m/d with a mean of(0.28±0.14)m/d in spring and 0.10 m/d to 1.08 m/d with a mean of(0.34±0.31)m/d in summer.The potential sedimentation flux of TEP-C ranged from 4.95 mg/(m2·d)to 29.40 mg/(m2·d)with a mean of(14.66±8.83)mg/(m2·d)in spring and 6.80 mg/(m2·d)to 30.45 mg/(m2·d)with a mean of(15.71±8.73)mg/(m2·d)in summer,which was^17.81%to 138.27%(mean=65.15%±31.75%)of sedimentation flux of phytoplankton cells in the study area.Due to the increase of TEPs concentrations and their sinking rates,sedimentation fluxes of TEPs at the bloom station were obviously higher than at the non-bloom station during both cruises.This study indicates that TEPs serve as a carbon sink in the Changjiang River Estuary,especially during bloom events,and their sedimentation should be taken into account when we study the carbon sedimentation in the coastal sea.
基金Supported by the National Natural Science Foundation of China(No.41376121)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020405)+1 种基金the Natural Science Foundation of Shandong Province(No.JQ201414)the Cooperation Project of Chinese Academy of Sciences and Hebei Academy of Sciences(No.13001001)
文摘The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Chang^iang (Yangtze) River, China. In total, 267 diatom taxa and two silicoflagellate species were identified from the sediments. The spatial variations in abundance and diversity were classified into three distinct geographic patterns using Q mode clustering: a south-north geographic pattern, a coastal-offshore pattern and a unique pattern in the Changjiang River mouth. The south-north geographic pattern was related to the spatial variations in sea temperature. Coscinodiscus oculatus, a warm-water species, indicated these variations by a gradual decrease in abundance from the south to the north. The coastal-offshore pattern was in response to the spatiaJ variations in salinity. Cyclotella stylorum, Actinocyclus ehrenbergii and Dictyocha messanensis, the dominant brackish species in coastal waters, significantly decreased at the isobaths of approximately 30 m, where the salinity was higher than 31. Paralia sulcata and Podosira stelliger indicated the impact of the Yellow Sea Warm Current in the central Yellow Sea. The unique pattern in the Changjiang River mouth showed the highest species diversity but lower abundance, apparently because: freshwater input can significantly increase the proportion of brackish species; nutrients can supply the growth ofphytoplankton; and high sedimentation rates can dilute the mierofossil abundance in the sediments. Our results show that an integration of environmental factors (e.g., nutrient levels, sedimentation rate, sea temperature, salinity and water depth) determined the spatial characteristics of the siliceous micro fossils in the surface sediments.
基金supported by the National Basic Research Program of China(2010CB428902)National Natural Science Foundation of China(40876088)
文摘Relocation of the Yellow River estuary has significant impacts on not only terrestrial environment and human activities, but also sedimentary and ecological environments in coastal seas. The responses of regional geochemical characteristics to the relocation event, however, have not been well studied. In the present study, we performed detailed geochemical elemental analyses of a sediment core from the northern Yellow Sea and studied their geochemical responses to the 1855AD relocation of the Yellow River estuary. The results show that TOC/TN, Co/A1203, Cr/A1203, Ni/A1203 and Se/A1203 ratios all decreased abruptly after 1855 AD, and similar decreases are observed in the sediments of the mud area southwest off the Cheju Island. These abrupt changes are very likely caused by the changes in source materials due to the relocation of the Yellow River estuary from the southern Yellow Sea to the Bohai Sea, which the corresponding decreasing trends caused by the changes in main source materials from those transported by the Liaohe River, the Haihe River and the Luanhe River to those by the Yellow River. Because the events have precise ages recorded in historical archives, these obvious changes in elemental geochemistry of sediments can be used to calibrate age models of related coastal sea sediments.
基金The National Key Research and Development Program of China under contract No.2016YFC1401600the Public Science and Technology Research Fund Projects for Ocean Research under contract No.201505003the 2015 Jiangsu Program of Entrepreneurship and Innovation Group under contract No.2191061503801/002
文摘Using sea surface salinity(SSS)observation from the soil moisture active passive(SMAP)mission,we analyzed the spatial distribution and seasonal variation of SSS around Changjiang River(Yangtze River)Estuary for the period of September 2015 to August 2018.First,we found that the SSS from SMAP is more accurate than soil moisture and ocean salinity(SMOS)mission observation when comparing with the in situ observations.Then,the SSS signature of the Changjiang River freshwater was analyzed using SMAP data and the river discharge data from the Datong hydrological station.The results show that the SSS around the Changjiang River Estuary is significantly lower than that of the open ocean,and shows significant seasonal variation.The minimum value of SSS appears in July and maximum SSS in December.The root mean square difference of daily SSS between SMAP observation and in situ observation is around 3 in both summer and winter,which is much lower than the annual range of SSS variation.In summer,the diffusion direction of the Changjiang River freshwater depicted by SSS from SMAP is consistent with the path of freshwater from in situ observation,suggesting that SMAP observation may be used in coastal seas in monitoring the diffusion and advection of freshwater discharge.
基金supported by the National Natural Science Foundation of China(Project No.41375096)the Research Grants Council of the Hong Kong Special Administrative Region(Project Nos.14408214 and 11305715)
文摘Sea level rise has become an important issue in global climate change studies. This study investigates trends in sea level records, particularly extreme records, in the Pearl River Estuary, using measurements from two tide gauge stations in Macao and Hong Kong. Extremes in the original sea level records (daily higher high water heights) and in tidal residuals with and without the 18.6-year nodal modulation are investigated separately. Thresholds for defining extreme sea levels are calibrated based on extreme value theory. Extreme events are then modeled by peaks-over-threshold models. The model applied to extremes in original sea level records does not include modeling of their durations, while a geometric distribution is added to model the duration of extremes in tidal residuals. Realistic modeling results are recommended in all stationary models. Parametric trends of extreme sea level records are then introduced to nonstationary models through a generalized linear model framework. The result shows that, in recent decades, since the 1960s, no significant trends can be found in any type of extreme at any station, which may be related to a reduction in the influence of tropical cyclones in the region. For the longer-term record since the 1920s at Macao, a regime shift of tidal amplitudes around the 1970s may partially explain the diverse trend of extremes in original sea level records and tidal residuals.
文摘Our work was aimed to study the phytoplankton communities in two coastal sites placed in Natural Reserve “Lake of Tarsia-Mouth of river Crati” in Northern Ionian Sea-Calabria (Italy). This zone represents a wetland area of high natural interest populated by different organisms (animals and plants) living in a transitional ecosystem characterized by a great biodiversity. The sampling was performed in two different seasonal periods (summer and autumn 2012) and in two different sites (marine site vs fluvial one). Different algal genera/species were recognized and analyzed by Utermohl inverted microscope method and also qualitative and quantitative measures of biomass were performed. The results showed that the dominant group was the Diatoms with exclusive species in such periods in both the sampling sites;we also observed the presence of genera and/or species of potentially toxic algae (Pseudo-nitzschia sp., Alexandrium taylori, Prorocentrum micans, Skeletonema sp.), mostly in summer. Complessively, the phytoplankton biomass was always higher in marine site than in the fluvial site. The results were also processed considering the context of the chemical-physical parameters (such as temperature, pH, salinity, nutrients). The high concentration of the nutrients N and P in such periods indicated a state of meso-eutrophic waters both in the proximity of river site as well as in the marine zone. The data represent the first contribution to the knowledge of the phytoplankton structure in this area, which results in a very variable environment with a high recovery capacity.
基金the National Basic Research Program of China (Nos. 2001 CB409703 and 2010CB428701)the National Natural Science Foundation of China (Nos. 41140037 and 41276 069)
文摘The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.
基金Project Supported by the National Science Foundation of China and the Chinese Academy of Sci-ences
文摘Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.
基金The Marine Public Welfare Project of China under contract Nos200805029,200905012,200905025,and 201005034the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract Nos JG0821 and JG1021
文摘The distributions of partial pressure of carbon dioxide (pCO2) in the surface waters of the Changjiang River Estuary and adjacent Hangzhou Bay were examined in the summer of 2010. Surface water pCO2 ranged from 751-2 095/zatm (1 atm=101 325 Pa) in the inner estuary, 177-1 036/zatm in the outer estuary, and 498-1 166 μatm in Hangzhou Bay. Overall, surface pCO2 behaved conservatively during the estuary mixing. In the inner estuary, surface pCO2 was relatively high due to urbanized pollution and a high respiration rate. The lowest pCO2 was observed in the outer estuary, which was apparently induced by a phytoplankton bloom because the dissolved oxygen and chlorophyll a were very high. The Changjiang River Estuary was a significant source of atmospheric CO2 and the degassing fluxes were estimated as 0-230 mmol/(m2.d) [61 mmol/(m2.d) on average] in the inner estuary. In contrast, the outer estuary acted as a CO2 sink.
基金Supported by Project of Fine Reservoir Description Technology of Heavy Oil Reservoir(No.1507)
文摘In order to solve dynamic Problems caused by the internal structure of fluvial reservoir,it is necessa-ry to study the fine anatomy of Point bar. Taking Minghuazhen Formation in the northern block of Q oilfield, Bohai Sea as an examPle,the authors studied identification marks,distribution Pattern and scale of Point bar based on coring,logging and dynamic data. The results show that the length of Point bar and the width of lateral accretion body are 713-911 m and 71-111m,resPectively;the diP angle and the thickness of lateral accretion bedding are 3. 5o-5. 9o and 0. 1-0. 5 m. The lateral accretion beddings are the key factor affecting the seePage velocity of the tracer.