Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt...Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon(SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents(g/kg) and stocks(kg/m^2) were significantly increased(P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer(0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios(Ln RR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase(2–4 years in this study) due to the negative Ln RR values, especially for 20–60 cm depth. And the SOCD in surface layer(0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer(Adjusted R^2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.展开更多
Metabolizing enzymes play important roles in the detoxification of various pollutants in aquatic organisms, thereby they can also be used to provide early-warning signals of environmental risks. Real-time quantitative...Metabolizing enzymes play important roles in the detoxification of various pollutants in aquatic organisms, thereby they can also be used to provide early-warning signals of environmental risks. Real-time quantitative reverse-transcription polymerase chain reaction assays were developed to quantify cytochrome P450 1A (CYP1A), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione-S-transferase (GST) in crucian carp (Carassius auratus). The methods were then used to detect the respective mRNA expression levels in liver tissue in wild crucian carp from the Hun River, North China. CYP1A mRNA expression was significantly up-regulated in fish from stations $5, $6, and $8 (p 〈 0.05). SOD mRNA expression was significantly down-regulated in downstream areas relative to fish from upstream sites (p 〈 0.05); GPx and CAT mRNA expression levels were also down-regulated at $9 (p 〈 0.05). In contrast, GST mRNA expression showed no obvious change between fish collected from up- or downstream areas of the river. Finally, an integrated biomarker response was used to evaluate the integrated impact of pollutants in the Hun River and allow better comprehension of the real toxicological risk of these investigated sites.展开更多
基金Under the auspices of the National Key R&D Program of China(No.2017YFC0505906)the National Natural Science Foundation of China(No.51639001,51379012)the Interdiscipline Research Funds of Beijing Normal University
文摘Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon(SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents(g/kg) and stocks(kg/m^2) were significantly increased(P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer(0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios(Ln RR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase(2–4 years in this study) due to the negative Ln RR values, especially for 20–60 cm depth. And the SOCD in surface layer(0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer(Adjusted R^2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.
基金supported by the Water Pollution Control and Management(No.2009ZX07528)
文摘Metabolizing enzymes play important roles in the detoxification of various pollutants in aquatic organisms, thereby they can also be used to provide early-warning signals of environmental risks. Real-time quantitative reverse-transcription polymerase chain reaction assays were developed to quantify cytochrome P450 1A (CYP1A), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione-S-transferase (GST) in crucian carp (Carassius auratus). The methods were then used to detect the respective mRNA expression levels in liver tissue in wild crucian carp from the Hun River, North China. CYP1A mRNA expression was significantly up-regulated in fish from stations $5, $6, and $8 (p 〈 0.05). SOD mRNA expression was significantly down-regulated in downstream areas relative to fish from upstream sites (p 〈 0.05); GPx and CAT mRNA expression levels were also down-regulated at $9 (p 〈 0.05). In contrast, GST mRNA expression showed no obvious change between fish collected from up- or downstream areas of the river. Finally, an integrated biomarker response was used to evaluate the integrated impact of pollutants in the Hun River and allow better comprehension of the real toxicological risk of these investigated sites.