To contribute to the enhancement of unconventional local materials used for road construction,this study characterizes a crushed sand 0/5,a clayey soil and the litho-stabilized material without and with hydraulic bind...To contribute to the enhancement of unconventional local materials used for road construction,this study characterizes a crushed sand 0/5,a clayey soil and the litho-stabilized material without and with hydraulic binder and determines their use in accordance with some reference specifications(CEBTP 1984).It is shown that the different components are not usable alone in pavement base.Indeed,the plasticity index obtained for the clayey soil is 21%,a value higher than the imposed standards.In addition,the grading of the 0/5 crushed sand does not fit into the range proposed by CEBTP.A combination of these two(02)components is therefore considered to obtain a suitable material usable for the sub-base.This new material does not enter any class of the CEBTP lateritic soils.In order to be used in base layer,a treatment with hydraulic binder is carried out with the intention to improve its mechanical performances.The optimal dosage of hydraulic binder to achieve the desired mechanical performance is obtained by studying the evolution of the mechanical characteristics of the mixture.After this treatment,the Bearing Ratio index of the mix increases from 37 to 223 for the optimal dosage and the dry compaction density decreases from 2.11 to 2.06 g/cm3 while the optimal water content increases from 9%to 10.1%.展开更多
The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cemen...The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cement paste and AGS stabilized granular is much lower than that of Portland slag cement.AGS has a good suitability to granular soils.Granular soils stabilized by AGS have a much higher strength than that of soils stabilized by P S cement.The same strength can be reached with 20% reduction of cement dosage for AGS cement.And their elastic and resilient modulus are similar,but the former has a much higher tensile splitting strength,so the AGS stabilized granular has a much better anti-cracking performance than that of the P S stabilized granular.The reduced value of the strength and the density with the retard time for the granular soils stabilized by AGS is lower than that for P S cement.展开更多
The effects of the proportion of fine aggregate, the maximum size of the aggregate and the proportion of the 9.5 mm to 4.75 mm particle in the coarse aggregate on the properties of the porous concrete are investigated...The effects of the proportion of fine aggregate, the maximum size of the aggregate and the proportion of the 9.5 mm to 4.75 mm particle in the coarse aggregate on the properties of the porous concrete are investigated. Results indicate that the porous concrete with a cement dosage only 150 kg/m^3 has high strength and satisfying permeability when the aggregate has a passing percentage of 4.75 mm around 10% to 15%, with the increase of the maximum size of the aggregate, the strength of the porous concrete decreases and the permeability increases. When the proportion of the 9.5 mm to 4.75 mm particle in the coarse aggregate is about 20%, there are no interference among the particles by Weymouth theory, the strength of the pervious porous concrete reaches the peak value. The optimum continues gradation limit of the aggregate for porous concrete pervious road base material is recommended according to the theoretical calculation and experimental results.展开更多
The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain high...The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain higher levels of (4mm-0.0 mm) dust, than would be the case in standard un bound road base mixtures. The combined influence of the steel slag and granulated blast furnace slag wastes content is to enhance the stiffness of the road base materials and save materials and cost during road construction. Triaxial repeated load tests were performed on the unbound and lightly bound materials to measure their resilient modulus. The test results show important improvements in the bond strength between the contents of road base materials. This offers the prospect of using these materials in road base materials to reduce the use of primary aggregates and thus minimize the cost of roads and highways construction.展开更多
To enhance the performance of mix granulate road base courses by cement treatment. The mechanical properties of cement treated mix granulate (CTMG) were studied, which was designed with 65% crushed masonry and 35% c...To enhance the performance of mix granulate road base courses by cement treatment. The mechanical properties of cement treated mix granulate (CTMG) were studied, which was designed with 65% crushed masonry and 35% crushed concrete by mass. The central composite design was employed to prepare specimens with different levels of cement content and degree of compaction. All specimens were cured in a fog room at 20 ℃ for a specific number of days. The compressive strength and the indirect tensile strength were determined through the monotonic compression and indirect tension tests. Effective prediction models for the mechanical properties of CTMG, in relation to the cement content, the degree of compaction and the curing time, were successfully established for a mix containing 65% crushed masonry and 35% crushed concrete by mass.展开更多
The modulus deviation of base material calculated from the data of falling weight deflectometer (FWD) was used to evaluate the uniformity of road base so as to reflect the construction quality. Four parameters,the r...The modulus deviation of base material calculated from the data of falling weight deflectometer (FWD) was used to evaluate the uniformity of road base so as to reflect the construction quality. Four parameters,the repeatability standard deviation of the data in the same driveway, the reproducibility standard deviation of the data in the different driveway, the consistency statistics value of the data in the different driveway, and the consistency statistics value of the data in the same driveway, were introduced for the construction uniformity analysis. The experimental result shows that the materials modulus calculated from FWD has a highly correlative relationship with the uniformity of road base.展开更多
A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power w...A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power which changes with the incidence angle. The relationship between backward power and incidence angle is used to find out the effective angle range and distinguish method. Experiment and simulation show that it is feasible to classifv these three conditions within incidence angle of 5.3 degree.展开更多
The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the...The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.展开更多
文摘To contribute to the enhancement of unconventional local materials used for road construction,this study characterizes a crushed sand 0/5,a clayey soil and the litho-stabilized material without and with hydraulic binder and determines their use in accordance with some reference specifications(CEBTP 1984).It is shown that the different components are not usable alone in pavement base.Indeed,the plasticity index obtained for the clayey soil is 21%,a value higher than the imposed standards.In addition,the grading of the 0/5 crushed sand does not fit into the range proposed by CEBTP.A combination of these two(02)components is therefore considered to obtain a suitable material usable for the sub-base.This new material does not enter any class of the CEBTP lateritic soils.In order to be used in base layer,a treatment with hydraulic binder is carried out with the intention to improve its mechanical performances.The optimal dosage of hydraulic binder to achieve the desired mechanical performance is obtained by studying the evolution of the mechanical characteristics of the mixture.After this treatment,the Bearing Ratio index of the mix increases from 37 to 223 for the optimal dosage and the dry compaction density decreases from 2.11 to 2.06 g/cm3 while the optimal water content increases from 9%to 10.1%.
文摘The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cement paste and AGS stabilized granular is much lower than that of Portland slag cement.AGS has a good suitability to granular soils.Granular soils stabilized by AGS have a much higher strength than that of soils stabilized by P S cement.The same strength can be reached with 20% reduction of cement dosage for AGS cement.And their elastic and resilient modulus are similar,but the former has a much higher tensile splitting strength,so the AGS stabilized granular has a much better anti-cracking performance than that of the P S stabilized granular.The reduced value of the strength and the density with the retard time for the granular soils stabilized by AGS is lower than that for P S cement.
基金Funded by the Opening Fund of the Key Laboratory of Silicate Material Science and Engineering,Ministry of Education(No.YSJJ2004-13)
文摘The effects of the proportion of fine aggregate, the maximum size of the aggregate and the proportion of the 9.5 mm to 4.75 mm particle in the coarse aggregate on the properties of the porous concrete are investigated. Results indicate that the porous concrete with a cement dosage only 150 kg/m^3 has high strength and satisfying permeability when the aggregate has a passing percentage of 4.75 mm around 10% to 15%, with the increase of the maximum size of the aggregate, the strength of the porous concrete decreases and the permeability increases. When the proportion of the 9.5 mm to 4.75 mm particle in the coarse aggregate is about 20%, there are no interference among the particles by Weymouth theory, the strength of the pervious porous concrete reaches the peak value. The optimum continues gradation limit of the aggregate for porous concrete pervious road base material is recommended according to the theoretical calculation and experimental results.
文摘The paper presents laboratory test results on hydraulically bound road base materials containing high volume of steel slag and blast furnace slag waste dusts compared with control mixtures. These mixtures contain higher levels of (4mm-0.0 mm) dust, than would be the case in standard un bound road base mixtures. The combined influence of the steel slag and granulated blast furnace slag wastes content is to enhance the stiffness of the road base materials and save materials and cost during road construction. Triaxial repeated load tests were performed on the unbound and lightly bound materials to measure their resilient modulus. The test results show important improvements in the bond strength between the contents of road base materials. This offers the prospect of using these materials in road base materials to reduce the use of primary aggregates and thus minimize the cost of roads and highways construction.
文摘To enhance the performance of mix granulate road base courses by cement treatment. The mechanical properties of cement treated mix granulate (CTMG) were studied, which was designed with 65% crushed masonry and 35% crushed concrete by mass. The central composite design was employed to prepare specimens with different levels of cement content and degree of compaction. All specimens were cured in a fog room at 20 ℃ for a specific number of days. The compressive strength and the indirect tensile strength were determined through the monotonic compression and indirect tension tests. Effective prediction models for the mechanical properties of CTMG, in relation to the cement content, the degree of compaction and the curing time, were successfully established for a mix containing 65% crushed masonry and 35% crushed concrete by mass.
文摘The modulus deviation of base material calculated from the data of falling weight deflectometer (FWD) was used to evaluate the uniformity of road base so as to reflect the construction quality. Four parameters,the repeatability standard deviation of the data in the same driveway, the reproducibility standard deviation of the data in the different driveway, the consistency statistics value of the data in the different driveway, and the consistency statistics value of the data in the same driveway, were introduced for the construction uniformity analysis. The experimental result shows that the materials modulus calculated from FWD has a highly correlative relationship with the uniformity of road base.
文摘A method of detecting dry, icy and wet road surface conditions based on scanniag detection of single wavelength backward power is proposed in this letter. The detector is used to receive the backward scattered power which changes with the incidence angle. The relationship between backward power and incidence angle is used to find out the effective angle range and distinguish method. Experiment and simulation show that it is feasible to classifv these three conditions within incidence angle of 5.3 degree.
基金support provide by Special Fund for Basic Scientific Research of Central Col leges, Changan University (310821172002)Postdoctoral Science Foundation of China (2016M590915)+2 种基金Basic Research Func of Ministry of Transportation (2014319812170)National Sci Tech Support Plan (2014BAG05B01)Basic Research Program of Natural Science in Shaanxi Province (S2017-ZRJJ-MS0603)
文摘The reasonable calculation of ground appropriateness index in permafrost region is the precondition of highway route design in permafrost region. The theory of knowledge base and fuzzy mathematics are applied, and the damage effect of permafrost is considered in the paper. Based on the idea of protecting permafrost the calculation method of ground appro- priateness index is put forward. Firstly, based on the actual environment conditions, the paper determines the factors affecting the road layout in permafrost areas by qualitative and quantitative analysis, including the annual slope, the average annual ground temperature of permafrost, the amount of ice in frozen soil, and the interference engineering. Secondly, based on the knowledge base theory and the use of Delphi method, the paper establishes the knowledge base, the rule base of the permafrost region and inference mechanism. The method of selecting the road in permafrost region is completed and realized by using the software platform. Thirdly, taking the Tuotuo River to Kaixin Mountain section of permafrost region as an example, the application of the method is studied by using an ArcGIS platform. Results show that the route plan determined by the method of selecting the road in perma-frost region can avoid the high temperature and high ice content area, conform the terrain changes and evade the heat disturbance among the existing projects. A reasonable route plan can be achieved, and it can provide the basis for the next engineering construction.