The essential requirement for precise localization of a self-driving car is a lane-level map which includes road markings(RMs).Obviously,we can build the lane-level map by running a mobile mapping system(MMS)which is ...The essential requirement for precise localization of a self-driving car is a lane-level map which includes road markings(RMs).Obviously,we can build the lane-level map by running a mobile mapping system(MMS)which is equipped with a high-end 3D LiDAR and a number of high-cost sensors.This approach,however,is highly expensive and ineffective since a single high-end MMS must visit every place for mapping.In this paper,a lane-level RM mapping system using a monocular camera is developed.The developed system can be considered as an alternative to expensive high-end MMS.The developed RM map includes the information of road lanes(RLs)and symbolic road markings(SRMs).First,to build a lane-level RM map,the RMs are segmented at pixel level through the deep learning network.The network is named RMNet.The segmented RMs are then gathered to build a lane-level RM map.Second,the lane-level map is improved through loop-closure detection and graph optimization.To train the RMNet and build a lane-level RM map,a new dataset named SeRM set is developed.The set is a large dataset for lane-level RM mapping and it includes a total of 25157 pixel-wise annotated images and 21000 position labeled images.Finally,the proposed lane-level map building method is applied to SeRM set and its validity is demonstrated through experimentation.展开更多
Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising sin...Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising since they can generalize detection result well under complicated environments and hold rich pixel-level semantic information.Nevertheless,the previous methods mostly study the training process of the segmentation network,while omitting the time cost of manually annotating pixel-level data.Besides,the pixel-level semantic segmentation results need to be fitted into more reliable and compact models so that geometrical information of road markings can be explicitly obtained.In order to tackle the above problems,this paper describes a semantic segmentation-based road marking detection method using around view monitoring system.A semiautomatic semantic annotation platform is developed,which exploits an auxiliary segmentation graph to speed up the annotation process while guaranteeing the annotation accuracy.A segmentation-based detection module is also described,which models the semantic segmentation results for the more robust and compact analysis.The proposed detection module is composed of three parts:vote-based segmentation fusion filtering,graph-based road marking clustering,and road-marking fitting.Experiments under various scenarios show that the semantic segmentation-based detection method can achieve accurate,robust,and real-time detection performance.展开更多
基金This work was supported by the Industry Core Technology Development Project,20005062Development of Artificial Intelligence Robot Autonomous Navigation Technology for Agile Movement in Crowded Space,funded by the Ministry of Trade,industry&Energy(MOTIE,Republic of Korea).
文摘The essential requirement for precise localization of a self-driving car is a lane-level map which includes road markings(RMs).Obviously,we can build the lane-level map by running a mobile mapping system(MMS)which is equipped with a high-end 3D LiDAR and a number of high-cost sensors.This approach,however,is highly expensive and ineffective since a single high-end MMS must visit every place for mapping.In this paper,a lane-level RM mapping system using a monocular camera is developed.The developed system can be considered as an alternative to expensive high-end MMS.The developed RM map includes the information of road lanes(RLs)and symbolic road markings(SRMs).First,to build a lane-level RM map,the RMs are segmented at pixel level through the deep learning network.The network is named RMNet.The segmented RMs are then gathered to build a lane-level RM map.Second,the lane-level map is improved through loop-closure detection and graph optimization.To train the RMNet and build a lane-level RM map,a new dataset named SeRM set is developed.The set is a large dataset for lane-level RM mapping and it includes a total of 25157 pixel-wise annotated images and 21000 position labeled images.Finally,the proposed lane-level map building method is applied to SeRM set and its validity is demonstrated through experimentation.
基金the National Natural Science Foundation of China(Nos.U1764264 and 61873165)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)。
文摘Road marking detection is an important branch in autonomous driving,understanding the road information.In recent years,deep-learning-based semantic segmentation methods for road marking detection have been arising since they can generalize detection result well under complicated environments and hold rich pixel-level semantic information.Nevertheless,the previous methods mostly study the training process of the segmentation network,while omitting the time cost of manually annotating pixel-level data.Besides,the pixel-level semantic segmentation results need to be fitted into more reliable and compact models so that geometrical information of road markings can be explicitly obtained.In order to tackle the above problems,this paper describes a semantic segmentation-based road marking detection method using around view monitoring system.A semiautomatic semantic annotation platform is developed,which exploits an auxiliary segmentation graph to speed up the annotation process while guaranteeing the annotation accuracy.A segmentation-based detection module is also described,which models the semantic segmentation results for the more robust and compact analysis.The proposed detection module is composed of three parts:vote-based segmentation fusion filtering,graph-based road marking clustering,and road-marking fitting.Experiments under various scenarios show that the semantic segmentation-based detection method can achieve accurate,robust,and real-time detection performance.