The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.T...The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.展开更多
Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to ...Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kine-matic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are intro-duced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot param-eters are classified into three categories, i.e., strongly sensi-tive, sensitive and almost insensitive parameters.展开更多
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g...Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.展开更多
基金supported by the National Key Research and Development Program of China(2019YFB1707505)the National Natural Science Foundation of China(Grant No.52005436)。
文摘The trend towards automation and intelligence in aircraft final assembly testing has led to a new demand for autonomous perception of unknown cockpit operation scenes in robotic collaborative airborne system testing.To address this demand,a robotic automated 3D reconstruction cell which enables to autonomously plan the robot end-camera’s trajectory is developed for image acquisition and 3D modeling of the cockpit operation scene.A continuous viewpoint path planning algorithm is proposed that incorporates both 3D reconstruction quality and robot path quality into optimization process.Smoothness metrics for viewpoint position paths and orientation paths are introduced together for the first time in 3D reconstruction.To ensure safe and effective movement,two spatial constraints,Domain of View Admissible Position(DVAP)and Domain of View Admissible Orientation(DVAO),are implemented to account for robot reachability and collision avoidance.By using diffeomorphism mapping,the orientation path is transformed into 3D,consistent with the position path.Both orientation and position paths can be optimized in a unified framework to maximize the gain of reconstruction quality and path smoothness within DVAP and DVAO.The reconstruction cell is capable of automatic data acquisition and fine scene modeling,using the generated robot C-space trajectory.Simulation and physical scene experiments have confirmed the effectiveness of the proposed method to achieve highprecision 3D reconstruction while optimizing robot motion quality.
基金supported by the National Natural Science Foundation of China (11142013, 11172260 and 11072214)the Doctoral Fund of Ministry of Education of China (20110101110016)the Fundamental Research Funds for the Central Universities of China(2011QNA4001)
文摘Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kine-matic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are intro-duced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot param-eters are classified into three categories, i.e., strongly sensi-tive, sensitive and almost insensitive parameters.
基金supported by the National High-tech Research and Development Program of China
文摘Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.