This paper describes the design of industrial robot controller based on the DSP technology. Robotic real time control is realized by PC and DSP motion control card and this method improves the performance of robotic c...This paper describes the design of industrial robot controller based on the DSP technology. Robotic real time control is realized by PC and DSP motion control card and this method improves the performance of robotic controller. Finally this paper gives some experiment results and conclusion.展开更多
This article presents the development of a robotic controller for technical training, academic teaching, and research. The controller was designed to interact from 1 to 6 DOF (degrees of freedom) serial robotic arms...This article presents the development of a robotic controller for technical training, academic teaching, and research. The controller was designed to interact from 1 to 6 DOF (degrees of freedom) serial robotic arms, actuated by brushed DC (direct current) servomotors equipped with incremental encoders. Controller architecture is based on four components: a processor, a reconfigurable FPGA (field-programmable gate array), measurement I/O hardware and software. Functionality of the robotic controller has been proved by means of the interaction with an SCARA (selective compliance assembly robot arm). The proposed controller presents the potential to teach technical courses (like robotics, control, electronics and programming) and to implement and validate advanced control algorithms.展开更多
Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation ...Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.展开更多
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req...A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm...Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dyn...A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.展开更多
Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relati...Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relation between the former and the latter is usually ignored. According to the general software architecture of open robot controllers, this paper discusses modeling and developing methods. And the relation between the typical ones is analyzed.展开更多
Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platfo...Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model is developed, and the hardware and software of the flight control system are designed and detailed. Flight control and navigation strategy and algorithms for waypoint flight problem are discussed. A result of flight experiment is also presented, which validates that the flight control system is applicable and initial machine intelligence of robotic blimp is achieved.展开更多
The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real...The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.展开更多
Although the modeling technologies for open robot controllers have been discussed widely, not much literature is devoted to the actual general modeling principles and strategies. The reason is that many researches foc...Although the modeling technologies for open robot controllers have been discussed widely, not much literature is devoted to the actual general modeling principles and strategies. The reason is that many researches focus on specific application fields. This paper accommodates for this lacuna and provides some general modeling principles and strategies. At last, the actual new modeling method Hierarchical Object Oriented Petri net (HOONet) which has been proved to be an effective modeling methodology, is used to illustrate the modeling strategies.展开更多
A hybrid position/force controller is designed for the joint 2 and the joint 3 of thePUMA 560 robot.The hybrid controller includes a multilayered neural network,which canidentify the dynamics of the contacted environm...A hybrid position/force controller is designed for the joint 2 and the joint 3 of thePUMA 560 robot.The hybrid controller includes a multilayered neural network,which canidentify the dynamics of the contacted environment and can optimize the parameters of PIDcontroller.The experimental results show that after having been trained,the robot has sta-ble response to the training patterns and strong adaptive ability to the situation between thepatterns.展开更多
Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or ...Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.展开更多
Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based ...Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropria...This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.展开更多
Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mob...Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
文摘This paper describes the design of industrial robot controller based on the DSP technology. Robotic real time control is realized by PC and DSP motion control card and this method improves the performance of robotic controller. Finally this paper gives some experiment results and conclusion.
文摘This article presents the development of a robotic controller for technical training, academic teaching, and research. The controller was designed to interact from 1 to 6 DOF (degrees of freedom) serial robotic arms, actuated by brushed DC (direct current) servomotors equipped with incremental encoders. Controller architecture is based on four components: a processor, a reconfigurable FPGA (field-programmable gate array), measurement I/O hardware and software. Functionality of the robotic controller has been proved by means of the interaction with an SCARA (selective compliance assembly robot arm). The proposed controller presents the potential to teach technical courses (like robotics, control, electronics and programming) and to implement and validate advanced control algorithms.
文摘Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
文摘A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.
基金supported by the National Natural Science Foundation of China(62173352,62103112)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012314)+1 种基金the Open Project of Shenzhen Institute of Artificial Intelligence and Robotics for Society(AC01202005006)the Key-Area Research and Development Program of Guangzhou(202007030004)。
文摘Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
基金supported by the National Natural Science Foundation of China (60428303)
文摘A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
文摘Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relation between the former and the latter is usually ignored. According to the general software architecture of open robot controllers, this paper discusses modeling and developing methods. And the relation between the typical ones is analyzed.
基金This project is supported by National Natural Science Foundation of China (No. 50405046, No. 60605028)Program for Excellent Young Teachers of Shanghai, China (No. 04Y0HB094)+1 种基金State Leading Academic Discipline Fund of China (No. Y0102)Provincial Leading Academic Discipline Fund of Shanghai, China (No. BB67).
文摘Robotic unmanned blimps own an enormous potential for applications in low-speed and low-altitude exploration, surveillance, and monitoring, as well as telecommunication relay platforms. To make lighter-than-air platform a robotic blimp with significant levels of autonomy, the decoupled longitude and latitude dynamic model is developed, and the hardware and software of the flight control system are designed and detailed. Flight control and navigation strategy and algorithms for waypoint flight problem are discussed. A result of flight experiment is also presented, which validates that the flight control system is applicable and initial machine intelligence of robotic blimp is achieved.
文摘The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.
文摘Although the modeling technologies for open robot controllers have been discussed widely, not much literature is devoted to the actual general modeling principles and strategies. The reason is that many researches focus on specific application fields. This paper accommodates for this lacuna and provides some general modeling principles and strategies. At last, the actual new modeling method Hierarchical Object Oriented Petri net (HOONet) which has been proved to be an effective modeling methodology, is used to illustrate the modeling strategies.
基金Supported by the National Defence Science & Technology Pre-research Fund of China.
文摘A hybrid position/force controller is designed for the joint 2 and the joint 3 of thePUMA 560 robot.The hybrid controller includes a multilayered neural network,which canidentify the dynamics of the contacted environment and can optimize the parameters of PIDcontroller.The experimental results show that after having been trained,the robot has sta-ble response to the training patterns and strong adaptive ability to the situation between thepatterns.
文摘Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.
文摘Considered as a top priority of industrial devel- opment, Industry 4.0 (or Industrie 4.0 as the German ver- sion) has being highlighted as the pursuit of both academy and practice in companies. In this paper, based on the review of state of art and also the state of practice in dif- ferent countries, shortcomings have been revealed as the lacking of applicable framework for the implementation of Industrie 4.0. Therefore, in order to shed some light on the knowledge of the details, a reference architecture is developed, where four perspectives namely manufacturing process, devices, software and engineering have been highlighted. Moreover, with a view on the importance of Cyber-Physical systems, the structure of Cyber-Physical System are established for the in-depth analysis. Further cases with the usage of Cyber-Physical System are also arranged, which attempts to provide some implications to match the theoretical findings together with the experience of companies. In general, results of this paper could be useful for the extending on the theoretical understanding of Industrie 4.0. Additionally, applied framework and proto- types based on the usage of Cyber-Physical Systems are also potential to help companies to design the layout of sensor nets, to achieve coordination and controlling of smart machines, to realize synchronous production with systematic structure, and to extend the usage of information and communication technologies to the maintenance scheduling.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
基金supported partially by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(NJZY13279)
文摘This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)
文摘Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.