Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l...Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features.展开更多
为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参...为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
文摘Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features.
文摘为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)优化ELM神经网络的网络入侵检测模型。首先将ELM神经网络参数编码成人工鱼的位置,然后利用人工鱼群算法通过模拟鱼群的觅食、聚群及追尾行为找到最优ELM神经网络参数,最后利用最优参数的ELM神经网络建立网络入侵检测模型,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,模型不仅提高了入侵检测正确率,而且加快了网络入侵检测速度。