The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain syst...The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.展开更多
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way...The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.展开更多
基金supported by the National Natural Science Foundation of China (6090405161021002)
文摘The problem of the robust D-stability analysis for linear systems with parametric uncertainties is addressed. For matrix polytopes, new conditions via the affine parameter-dependent Lyapunov function of uncertain systems are developed with the benefit of the scalar multi-convex function. To be convenient for applications, such conditions are simplified into new linear matrix inequality (LMI) conditions, which can be solved by the powerful LMI toolbox. Numerical examples are provided to indicate that this new approach is less conservative than previous results for Hurwitz stability, Schur stability and D-stability of uncertain systems under certain circumstances.
基金Supported by the National Natural Science Foundation of P.R.China (60274017, 60572070, 60325311) the Natural Science Foundation of Liaoning Province (20022030)
文摘The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.