Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an...Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.展开更多
In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system ...In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.展开更多
The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. Howe...The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. However, uncertainties of PV and load powers can present great challenges to scheduling HESs. To address these uncertainties, this paper proposes a novel two-stage optimization approach that combines distributionally robust chance-constrained (DRCC) and robust-stochastic optimization (RSO) approaches to minimize the operational cost of an HES. In the first stage, the scheduling of each device is obtained via the DRCC approach considering the PV power and load forecast errors. The second stage provides a robust near real time energy dispatch according to different scenarios of PV power and load demand. The solution of the RSO problem is obtained via a novel double-layer particle swarm optimization algorithm. The performance of the proposed approach is compared to the traditional stochastic and robust-stochastic approaches. Simulation results de- monstrate the superiority of the proposed two-stage approach and its solution method in terms of operational cost and execution time.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61271323)the Open Project from State Key Laboratory of Millimeter Waves, China (Grant No. K200913)
文摘Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.
文摘In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.
文摘The application of floating photovoltaics (PVs) in hydropower plants has gained increasing interest in forming hybrid energy systems (HESs). It enhances the operational benefits of the existing hydropower plants. However, uncertainties of PV and load powers can present great challenges to scheduling HESs. To address these uncertainties, this paper proposes a novel two-stage optimization approach that combines distributionally robust chance-constrained (DRCC) and robust-stochastic optimization (RSO) approaches to minimize the operational cost of an HES. In the first stage, the scheduling of each device is obtained via the DRCC approach considering the PV power and load forecast errors. The second stage provides a robust near real time energy dispatch according to different scenarios of PV power and load demand. The solution of the RSO problem is obtained via a novel double-layer particle swarm optimization algorithm. The performance of the proposed approach is compared to the traditional stochastic and robust-stochastic approaches. Simulation results de- monstrate the superiority of the proposed two-stage approach and its solution method in terms of operational cost and execution time.