期刊文献+
共找到2,502篇文章
< 1 2 126 >
每页显示 20 50 100
MarkINeRV: A Robust Watermarking Scheme for Neural Representation for Videos Based on Invertible Neural Networks
1
作者 Wenquan Sun Jia Liu +2 位作者 Lifeng Chen Weina Dong Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4031-4046,共16页
Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit metho... Recent research advances in implicit neural representation have shown that a wide range of video data distributions are achieved by sharing model weights for Neural Representation for Videos(NeRV).While explicit methods exist for accurately embedding ownership or copyright information in video data,the nascent NeRV framework has yet to address this issue comprehensively.In response,this paper introduces MarkINeRV,a scheme designed to embed watermarking information into video frames using an invertible neural network watermarking approach to protect the copyright of NeRV,which models the embedding and extraction of watermarks as a pair of inverse processes of a reversible network and employs the same network to achieve embedding and extraction of watermarks.It is just that the information flow is in the opposite direction.Additionally,a video frame quality enhancement module is incorporated to mitigate watermarking information losses in the rendering process and the possibility ofmalicious attacks during transmission,ensuring the accurate extraction of watermarking information through the invertible network’s inverse process.This paper evaluates the accuracy,robustness,and invisibility of MarkINeRV through multiple video datasets.The results demonstrate its efficacy in extracting watermarking information for copyright protection of NeRV.MarkINeRV represents a pioneering investigation into copyright issues surrounding NeRV. 展开更多
关键词 Invertible neural network neural representations for videos WATERMARKING robustNESS
下载PDF
RWNeRF:Robust Watermarking Scheme for Neural Radiance Fields Based on Invertible Neural Networks
2
作者 Wenquan Sun Jia Liu +2 位作者 Weina Dong Lifeng Chen Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4065-4083,共19页
As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge... As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection. 展开更多
关键词 Neural radiance fields 3D scene robust watermarking invertible neural networks
下载PDF
Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular networks 被引量:1
3
作者 Pengfei Du Hongjiang Lei +2 位作者 Imran Shafique Ansari Jianbo Du Xiaoli Chu 《Digital Communications and Networks》 SCIE CSCD 2023年第3期797-808,共12页
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-m... Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emis-sions and electricity expenses of base stations.However,renewable energy is inherently stochastic and inter-mittent,imposing formidable challenges on reliably satisfying users'time-varying wireless traffic demands.In addition,the probability distribution of the renewable energy or users’wireless traffic demand is not always fully known in practice.In this paper,we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations,the battery charging and discharging rates,and the energy purchased from the grid under the constraint of a limited battery size at each base station.In solving the formulated non-convex chance-constrained stochastic optimization problem,a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance.Using this ambiguity set,the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach.Furthermore,a low-complexity distributionally robust chance-constrained energy management algo-rithm,which requires only interval sets of the mean and covariance of stochastic parameters,is proposed.The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity,energy cost,and reliability. 展开更多
关键词 Cellular networks Energy harvesting Energy management Chance-constrained Distributionally robust optimization
下载PDF
Robustness of community networks against cascading failures with heterogeneous redistribution strategies
4
作者 宋波 吴惠明 +3 位作者 宋玉蓉 蒋国平 夏玲玲 王旭 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期611-618,共8页
Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and com... Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure. 展开更多
关键词 community networks cascading failure model network robustness nodes influence identification
下载PDF
Robust beamforming for IRS-aided SWIPT in cognitive radio networks
5
作者 Zining Wang Min Lin +3 位作者 Shupei Huang Ming Cheng Wei-Ping Zhu Yan Guo 《Digital Communications and Networks》 SCIE CSCD 2023年第3期645-654,共10页
Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper propose... Intelligent reflecting surface(IRS)is widely recognized as a promising technique to enhance the system perfor-mance,and thus is a hot research topic in future wireless communications.In this context,this paper proposes a robust BF scheme to improve the spectrum and energy harvesting efficiencies for the IRS-aided simultaneous wireless information and power transfer(SWIPT)in a cognitive radio network(CRN).Here,the base station(BS)utilizes spectrum assigned to the primary users(PUs)to simultaneously serve multiple energy receivers(ERs)and information receivers(IRs)through IRS-aided multicast technology.In particular,by assuming that only the imperfect channel state information(CSI)is available,we first formulate a constrained problem to maximize the minimal achievable rate of IRs,while satisfying the harvesting energy threshold of ERs,the quality-of-service requirement of IRs,the interference threshold of PUs and transmit power budget of BS.To address the non-convex problem,we then adopt triangle inequality to deal with the channel uncertainty,and propose a low-complexity algorithm combining alternating direction method of multipliers(ADMM)with alternating optimi-zation(AO)to jointly optimize the active and passive beamformers for the BS and IRS,respectively.Finally,our simulation results confirm the effectiveness of the proposed BF scheme and also provide useful insights into the importance of introducing IRS into the CRN with SWIPT. 展开更多
关键词 Cognitive radio networks Intelligent reflecting surface Simultaneous wireless information and power TRANSFER robust beamforming
下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
6
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT robust hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
下载PDF
A Vertex Network Model of Arabidopsis Leaf Growth
7
作者 Luke Andrejek Janet Best +1 位作者 Ching-Shan Chou Aman Husbands 《Communications on Applied Mathematics and Computation》 EI 2024年第1期454-488,共35页
Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible,or robust,manner.One such system is the growth and development of flat leaves in Arabidopsis thali... Biology provides many examples of complex systems whose properties allow organisms to develop in a highly reproducible,or robust,manner.One such system is the growth and development of flat leaves in Arabidopsis thaliana.This mechanistically challenging process results from multiple inputs including gene interactions,cellular geometry,growth rates,and coordinated cell divisions.To better understand how this complex genetic and cellular information controls leaf growth,we developed a mathematical model of flat leaf production.This two-dimensional model describes the gene interactions in a vertex network of cells which grow and divide according to physical forces and genetic information.Interestingly,the model predicts the presence of an unknown additional factor required for the formation of biologically realistic gene expression domains and iterative cell division.This two-dimensional model will form the basis for future studies into robustness of adaxial-abaxial patterning. 展开更多
关键词 robustNESS Adaxial-abaxial patterning Mathematical modeling Gene regulatory networks(GRNs) Transcription factors Small RNAs
下载PDF
Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles 被引量:7
8
作者 罗伟林 邹早建 《China Ocean Engineering》 SCIE EI 2007年第2期281-292,共12页
A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combin... A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations. 展开更多
关键词 underwater vehicle trajectory tracking robust control neural network
下载PDF
Robust fault detection for a class of nonlinear network control system with communication delay 被引量:5
9
作者 Ai Qiangyu Liu Chunsheng Jiang Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1024-1030,共7页
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran... To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach. 展开更多
关键词 nonlinear network control systems robust fault detection OBSERVER linear matrix inequality.
下载PDF
Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic Constraints 被引量:5
10
作者 Zhi-Sheng Chen Yong He Min Wu 《International Journal of Automation and computing》 EI 2010年第4期492-499,共8页
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf... This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method. 展开更多
关键词 Nonlinear networked control system fuzzy model robust tracking integral quadratic constraint linear matrix inequality.
下载PDF
Optimization of robustness of network controllability against malicious attacks 被引量:3
11
作者 肖延东 老松杨 +1 位作者 侯绿林 白亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期678-685,共8页
As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. I... As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative. 展开更多
关键词 robustNESS network controllability structure controllability
下载PDF
A new result on global exponential robust stability of neural networks with time-varying delays 被引量:4
12
作者 Jinliang SHAO Tingzhu HUANG 《控制理论与应用(英文版)》 EI 2009年第3期315-320,共6页
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e... In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result. 展开更多
关键词 Neural networks Time-varying delays Global exponential robust stability
下载PDF
Robust model predictive control with randomly occurred networked packet loss in industrial cyber physical systems 被引量:8
13
作者 CAI Hong-bin LI Ping +1 位作者 SU Cheng-li CAO Jiang-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1921-1933,共13页
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech... For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method. 展开更多
关键词 robust model predictive control networked control system packet loss linear matrix inequalities (LMIs)
下载PDF
Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning 被引量:2
14
作者 Zhang Yinan Sun Qingwei +2 位作者 Quan He Jin Yonggao Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期495-501,共7页
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ... In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm. 展开更多
关键词 uncertain information information fusion neural networks fuzzy inference robust estimate.
下载PDF
New Robust Exponential Stability Analysis for Uncertain Neural Networks with Time-varying Delay 被引量:3
15
作者 Yong-Gang Chen Wei-Ping Bi 《International Journal of Automation and computing》 EI 2008年第4期395-400,共6页
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new... In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method. 展开更多
关键词 robust exponential stability uncertain neural networks time-varying delay Lyapunov functional method linear matrix inequalities (LMIs).
下载PDF
Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique 被引量:6
16
作者 DAI Wei LI De-peng +1 位作者 CHEN Qi-xin CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期43-62,共20页
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu... As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation. 展开更多
关键词 hematite grinding process particle size stochastic configuration network robust technique M-estimation nonparametric kernel density estimation
下载PDF
Study on Robust H_∞ Filtering in Networked Environments 被引量:2
17
作者 Yun-Ze Cai Li Xu +1 位作者 Jian-Xi Gao Xiao-Ming Xu 《International Journal of Automation and computing》 EI 2011年第4期465-471,共7页
This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distri... This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on state augmentation and stochastic theory, the sufficient condition for robust stability with H ∞ constraints is derived for the filtering error system. The robust filter is designed in terms of feasibility of one certain linear matrix inequality (LMI), which is formed by adopting matrix congruence transformations. A numerical example is given to show the effectiveness of the proposed filtering method. 展开更多
关键词 robust filtering networked environments transmission delay packet dropouts linear matrix inequality (LMI).
下载PDF
Delay-dependent Criteria for Robust Stability of Uncertain Switched Hopfield Neural Networks 被引量:2
18
作者 Xu-Yang Lou Bao-Tong Cui 《International Journal of Automation and computing》 EI 2007年第3期304-314,共11页
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi... This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones. 展开更多
关键词 Delay-dependent criteria robust stability switched systems Hopfield neural networks time-varying delay linear matrix inequality.
下载PDF
Robust stability analysis of networked control systems 被引量:2
19
作者 Jinfeng GAO Hongye SU Jian CHU 《控制理论与应用(英文版)》 EI 2009年第3期301-306,共6页
This paper is concerned with the problem of robust stability analysis for networked control systems (NCSs). A new NCS model is proposed under consideration of both the network-induced delay and parameter uncertainti... This paper is concerned with the problem of robust stability analysis for networked control systems (NCSs). A new NCS model is proposed under consideration of both the network-induced delay and parameter uncertainties. The parameter uncertainties appearing in NCSs are norm-bounded, and possibly time-varying. The conventional method and the descriptor system method are used to obtain maximum allowable delay bound (MADB) guaranteeing robust stability and stability of the NCSs, respectively, where the stability criteria are formulated in terms of linear matrix inequalities (LMIs). And the MADB can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to illustrate the effectiveness of the proposed method. 展开更多
关键词 robust control Time-delay system networked control systems (NCSs) Linear matrix inequality (LMI)
下载PDF
Robust adaptive synchronization of uncertain and delayed dynamical complex networks with faulty network 被引量:1
20
作者 金小峥 杨光红 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期184-190,共7页
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont... This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria. 展开更多
关键词 dynamical complex networks SYNCHRONIZATION robust adaptive control faulty network time-varying delays
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部