This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co...A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
This paper is concerned with robust model predictive control for linear continuous uncertain systems with state delay and control constraints, A piecewise constant control sequence is calculated by minimizing the uppe...This paper is concerned with robust model predictive control for linear continuous uncertain systems with state delay and control constraints, A piecewise constant control sequence is calculated by minimizing the upper-bound of the infinite horizon quadratic cost function, At each sampling time, the sufficient conditions for the existence of the model predictive control are derived, and expressed as a set of linear matrix inequalities. The robust stability of the closed-loop svstems is guaranteed bv the proposed design method. A numerical example is given to illustrate the main results.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p...Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.展开更多
Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional...Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional FCS-MPTC speed controller design,a classical proportional integral(PI)controller is typically chosen to generate the torque reference.However,the PI controller is dependent on system parameters and sensitive to the load torque variation,which seriously affects control performance.In this paper,a model predictive torque control using sliding mode control(MPTC+SMC)for IM is proposed to enhance the robust performance of the drive system.First,the influence of the parameter mismatches for FCS-MPTC is analyzed.Second,the shortcomings of traditional PI controller are derived.Then,the proposed MPTC+SMC method is designed,and the MPTC+PI and MPTC+SMC are compared theoretically.Finally,experimental results demonstrate the correctness and effectiveness of the proposed MPTC+SMC.In comparison with MPTC+PI,MPTC+SMC has the better dynamic performance and stronger robust performance against parameter variations and load disturbance.展开更多
This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence o...This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.展开更多
Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhan...Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhanced twoloop MPC design is proposed for a pre-stabilized system with the bounded uncertainty subject to the input and state constraints.The proposed method offers less conservatism than the tube-based MPC methods by enlarging the restricted input constraint.Contrary to the MPC-based RGs,the investigated method improves tracking performance of the pre-stabilized system while satisfying the constraints.Additionally,the robust global asymptotic stability of the closed-loop system is guaranteed in a novel procedure with terminal constraint relaxation.Simulation of the proposed method on a servo system shows its effectiveness in comparison to the others.展开更多
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env...A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.展开更多
This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint...This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.展开更多
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金Supported by Natural Science Foundation of China(Grant Nos.52072051,51705044)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956)+1 种基金State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202016)State Key Laboratory of Mechanical Transmissions(Grant No.SKLMT-KFKT-201806).
文摘A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
基金the National Natural Science Foundation of China (No.60574016)
文摘This paper is concerned with robust model predictive control for linear continuous uncertain systems with state delay and control constraints, A piecewise constant control sequence is calculated by minimizing the upper-bound of the infinite horizon quadratic cost function, At each sampling time, the sufficient conditions for the existence of the model predictive control are derived, and expressed as a set of linear matrix inequalities. The robust stability of the closed-loop svstems is guaranteed bv the proposed design method. A numerical example is given to illustrate the main results.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
基金Supported by National Natural Science Foundation of China (60504026, 60674041) and National High Technology Research and Development Program of China (863 Program)(2006AA04Z173).
基金supported in part by the National Natural Science Foundation of China(51875261)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX21_3331)+1 种基金the Faculty of Agricultural Equipment of Jiangsu University(NZXB20210103)。
文摘Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted.
基金supported by National Natural Science Foundation of China(61403254,61374039,61203143)Shanghai Pujiang Program(13PJ1406300)+2 种基金Natural Science Foundation of Shanghai City(13ZR1428500)Innovation Program of Shanghai Municipal Education Commission(14YZ083)Hujiang Foundation of China(C14002,B1402/D1402)
基金supported in part by the National Natural Science Funds of China under Grants 5217071282 and 5210071275in part by China Postdoctoral Science Foundation under Grant 2020M683524+7 种基金in part by Nature Science Basic Research Plan in Shaanxi Province under Grant 2020JQ-631 and 2021JQ-477in part by State Key Laboratory of Electrical Insulation and Power Equipment under Grant EIPE20201in part by State Key Laboratory of Large Electric Drive System and Equipment Technology under Grant SKLLDJ012016006in part by Key Research and Development Project of ShaanXi Province under Grant 2019GY-060in part by Key Laboratory of Industrial Automation in ShaanXi Province under Grant SLGPT2019KF01-12in part by the Key R&D plan of Shaanxi Province under Grant 2021GY-282in part by Shaanxi Outstanding Youth Fund under Grant 2020JC-40in part by Key Laboratory of Power Electronic Devices and High Efficiency Power Conversion in Xi’an under Grant 2019219814SYS013CG035。
文摘Finite control set model predictive torque control(FCS-MPTC)has become increasingly prevalent for induction motors(IM)owing to its simple concept,easy incorporation of constraints and strong flexibility.In traditional FCS-MPTC speed controller design,a classical proportional integral(PI)controller is typically chosen to generate the torque reference.However,the PI controller is dependent on system parameters and sensitive to the load torque variation,which seriously affects control performance.In this paper,a model predictive torque control using sliding mode control(MPTC+SMC)for IM is proposed to enhance the robust performance of the drive system.First,the influence of the parameter mismatches for FCS-MPTC is analyzed.Second,the shortcomings of traditional PI controller are derived.Then,the proposed MPTC+SMC method is designed,and the MPTC+PI and MPTC+SMC are compared theoretically.Finally,experimental results demonstrate the correctness and effectiveness of the proposed MPTC+SMC.In comparison with MPTC+PI,MPTC+SMC has the better dynamic performance and stronger robust performance against parameter variations and load disturbance.
文摘This paper presents a two-stage robust model predictive control (RMPC) algorithm named as IRMPC for uncertain linear integrating plants described by a state-space model with input constraints. The global convergence of the resulted closed loop system is guaranteed under mild assumption. The simulation example shows its validity and better performance than conventional Min-Max RMPC strategies.
文摘Model predictive controllers(MPC)with the two-loop scheme are successful approaches practically and can be classified into two main categories,tube-based MPC and MPCbased reference governors(RG).In this paper,an enhanced twoloop MPC design is proposed for a pre-stabilized system with the bounded uncertainty subject to the input and state constraints.The proposed method offers less conservatism than the tube-based MPC methods by enlarging the restricted input constraint.Contrary to the MPC-based RGs,the investigated method improves tracking performance of the pre-stabilized system while satisfying the constraints.Additionally,the robust global asymptotic stability of the closed-loop system is guaranteed in a novel procedure with terminal constraint relaxation.Simulation of the proposed method on a servo system shows its effectiveness in comparison to the others.
基金National Natural Science Foundation of China(Nos.62173303 and 62273307)Natural Science Foundation of Zhejiang Province(No.LQ24F030023)。
文摘A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security.
基金supported by the Deanship of Scientific Research(DSR)at the King Fahd University of Petroleum and Minerals(KFUPM)(141048)
文摘This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H_2 control and H_∞ control. Simulation is performed for all the approaches yielding good performance results.
文摘针对新能源汽车充电(G2V)三相整流器为研究对象,研究基于模型预测控制(model predictive control,MPC)的充电控制策略。传统的MPC算法需要准确的系统模型参数,而当控制器中使用的模型参数与主电路实际参数不匹配时,控制性能可能发生恶化,影响整流器充电控制性能。针对此问题,该文将系统参数不匹配作为扩张状态观测器(extended state observer,ESO)扩张出来的扰动项而进行估计,并将扰动进行补偿,从而设计一种基于ESO的MPC充电控制策略。该方法仅使用了系统的输入和输出数据,而不需要精确的系统模型,因此即使模型参数不匹配时,ESO也能够将不匹配项作为扰动而对预测电流进行准确估计,从而提高MPC对参数变化及不匹配的鲁棒性。仿真与实验结果验证了该方法的可行性和有效性。