In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
With the development of economy, the adjustment of industrial structure, the improvement of people's living standard and the expansion of urbanization, the structure of the city has changed a lot. The proportion of i...With the development of economy, the adjustment of industrial structure, the improvement of people's living standard and the expansion of urbanization, the structure of the city has changed a lot. The proportion of industrial use of electricity decreased year by year, the proportion of household electricity, commercial electricity and public utilities increased year by year, the peak and valley change increased year by year. Therefore, the construction of hydropower project, to improve the current situation of the system of regulating the power grid, has a positive role in promoting. Reinforced rock fill dam with face slab in foreign countries has been built and at the dam more than 50m high dam more than 70 seats, of which more than 100m high dam 18. At present, Brazil estuary aliya rock fill dam is the highest dam in this kind of dam in the world, built in 1980, has been running well. Our reinforced rock fill dam with face slab design and construction technology in the introduction of digestion and absorption of foreign advanced experience in the foundation, the systemic research on a considerable scale. The design level and construction technology of the rock fill dam with face slab in our country have reached the international advanced level by the complete technology of the construction of the 100m level rock fill dam with face slab. This paper mainly from the rock fill dam with face slab, dam type selection and layout of water conservancy project comparison; dam profile design; detail dam; dam high determined; stability analysis; strength calculation; overflow capacity check aspects were studied.展开更多
This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of...This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.展开更多
The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the...The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.展开更多
Existing engineering problems in Mosul Dam and their background are discussed in this paper. A thorough review of the available geological reports was made. These reports covered many decades of investigations from 19...Existing engineering problems in Mosul Dam and their background are discussed in this paper. A thorough review of the available geological reports was made. These reports covered many decades of investigations from 1953 up to the investigations performed during the construction of the dam. A large volume of geological information was accumulated during these investigations, but it is unfortunate to see that some of the basic facts were not interpreted correctly. This applies to the incorrect correlation of the encountered beds in the exploration boreholes and miss-understanding of the actual stratigraphic succession at the dam site. This misinterpretation contributed to misleading results regarding the true karst zones and the type of rocks and their thicknesses in the foundation zone and surrounding area. As a result, the dam was placed on problematic foundations consisting of brecciated and highly kartsified gypsum/anhydrite rocks and/or conglomerates in which gypsum forms the main constituent as cementing materials. Karstified beds were not recognized in some depths and were described as normal marl and/or breccias. This also added to the use of improper method of foundation treatment by adopting a deep grout curtain as the main anti-seepage measure instead of using a more positive measure by constructing a diaphragm wall. The mentioned misinterpretations are discussed here in details together with their consequences, and a more accurate picture of the geology is presented.展开更多
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
文摘With the development of economy, the adjustment of industrial structure, the improvement of people's living standard and the expansion of urbanization, the structure of the city has changed a lot. The proportion of industrial use of electricity decreased year by year, the proportion of household electricity, commercial electricity and public utilities increased year by year, the peak and valley change increased year by year. Therefore, the construction of hydropower project, to improve the current situation of the system of regulating the power grid, has a positive role in promoting. Reinforced rock fill dam with face slab in foreign countries has been built and at the dam more than 50m high dam more than 70 seats, of which more than 100m high dam 18. At present, Brazil estuary aliya rock fill dam is the highest dam in this kind of dam in the world, built in 1980, has been running well. Our reinforced rock fill dam with face slab design and construction technology in the introduction of digestion and absorption of foreign advanced experience in the foundation, the systemic research on a considerable scale. The design level and construction technology of the rock fill dam with face slab in our country have reached the international advanced level by the complete technology of the construction of the 100m level rock fill dam with face slab. This paper mainly from the rock fill dam with face slab, dam type selection and layout of water conservancy project comparison; dam profile design; detail dam; dam high determined; stability analysis; strength calculation; overflow capacity check aspects were studied.
文摘This paper compares the different inversion results of three different earth rock-fill dam models with the actual leakage passages by performing isotope tracing tests and resistivity tomographic tests. The accuracy of the experimental results is evaluated, and the characteristics of these two methods are analyzed. As a result, some significant references are offered for earth rock-fill dam’s hidden defects detection. The experimental results show that the leakage and the direction of the seepage can be judged by isotope tracing tests, meanwhile, the degree of the leakage can be confirmed through the determination of the horizontal seepage velocity and the vertical seepage velocity, but it is difficult to properly determine the position of leakage passages and the range of leakage. Relatively speaking, the positions of the leakage passages can be accurately and directly displayed through resistivity tomographic tests. The experiment results show that the resistivity tomographic method is much better than isotope tracing method with regard to earth rock-fill dam’s hidden defects detection, and the resistivity tomographic method expresses much more convenience and much higher precision than isotope tracing method.
文摘The leakage occurs during operation of the dam in Liuhuanggou reservoir. It’s a threat to the safety of the people’s lives and property in downstream. In order to eliminate the hidden danger of reservoir, ensure the safety of the dam, play better the function of flood control and water storage of the reservoir etc., we apply the 3D electrical resistivity tomography detecting technology and volume rendering image processing technology, make the measurement in field, process the data and combine the field survey to find out the leakage channels inside the dam. The results show that the 3D resistivity images appear the low resistivity zone corresponding with the leakage channels. There are two main leakage channels that come from different location inside the dam. It is feasible to diagnose the leakage in earth rock-fill dam by applying 3D electrical resistivity tomography.
文摘Existing engineering problems in Mosul Dam and their background are discussed in this paper. A thorough review of the available geological reports was made. These reports covered many decades of investigations from 1953 up to the investigations performed during the construction of the dam. A large volume of geological information was accumulated during these investigations, but it is unfortunate to see that some of the basic facts were not interpreted correctly. This applies to the incorrect correlation of the encountered beds in the exploration boreholes and miss-understanding of the actual stratigraphic succession at the dam site. This misinterpretation contributed to misleading results regarding the true karst zones and the type of rocks and their thicknesses in the foundation zone and surrounding area. As a result, the dam was placed on problematic foundations consisting of brecciated and highly kartsified gypsum/anhydrite rocks and/or conglomerates in which gypsum forms the main constituent as cementing materials. Karstified beds were not recognized in some depths and were described as normal marl and/or breccias. This also added to the use of improper method of foundation treatment by adopting a deep grout curtain as the main anti-seepage measure instead of using a more positive measure by constructing a diaphragm wall. The mentioned misinterpretations are discussed here in details together with their consequences, and a more accurate picture of the geology is presented.