Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence backgrou...Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence background or situation. That is to say, temperature, compression,content of water and other liquid in rocks, boundary condition of rock block,straining rate etc.,which are closely related to the depth of occurrence of rock, influence on the rock behavior and deformation effects.展开更多
There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties...There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.展开更多
Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading condi...Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.展开更多
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro...Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.展开更多
This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentra...This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentrations of V and As initially increased and then slightly decreased as time progressed and that the dissolved concentrations of Pb,Cd,and Cr were high in the early stage before decreasing.The particle size of the stone coal waste rocks strongly influenced the heavy metal concentration in the leaching solutions.The effects of the particle size of the stone coal waste rocks on the dissolved concentrations of V,Pb,and As decreased in the order fine fraction > medium fraction > coarse fraction,and the effects of particle size on the dissolved concentrations of Cr and Cd decreased in the order medium fraction > coarse fraction > fine fraction and coarse fraction > medium fraction > fine fraction,respectively.The quantities of heavy metals dissolved from the stone coal waste rock with fine particle sizes were observed to decrease in the order V(17104.36 μg/kg) > As(609.41 μg/kg) > Pb(469.24 μg/kg) > Cr(56.35 μg/kg) > Cd(27.52 μg/kg),and the dissolution rates decreased in the order As(2.96%) > Pb(0.93%) > V(0.35%) > Cd(0.25%) > Cr(0.01%).The specific surface area,pore size of the stone coal waste rocks,and chemical forms of heavy metals also influenced the release of heavy metals from the stone coal waste rocks.Kinetic analysis showed that the dissolution of heavy metals fundamentally agreed with the rate equation controlled by the shrinking core model.The results of this study are expected to serve as a reference for the evaluation of heavy metals contamination from stone coal waste rocks.展开更多
The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercep...The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercept A on the log-log plot of variance: the former describes the irregularity and the later is statistically analogues to the slopes of asperities. In order to confirm the effects of these fractalparameters on the properties and mechanical behavior of rock joints, which have been observed in experiments under both normal andshear loadings, a theoretic model of rock joint is proposed on the basis of contact mechanics. The shape of asperity at contact is assumed to have a sinusoidal form in its representative scale r, with fractal dimension D and the intercept A. The model considers different local contact mechanisms, such as elastic deformation, frictional sliding and tensile fracture of the asperity. The empirical evolution law of surface damage developed in experiment is implemented into the model to up-date geometry of asperity in loading history. The effects of surface roughness characterized by D, A and re on normal and shear deformation of rock joint have been elaborated.展开更多
Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behavior...Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.展开更多
In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental f...In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.展开更多
This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fis...This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.展开更多
To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus...To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.展开更多
A multiple rocking wall-frame(MRWF)system,in which the wall panels are directly connected to the adjacent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT)tendons are used to ...A multiple rocking wall-frame(MRWF)system,in which the wall panels are directly connected to the adjacent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT)tendons are used to promote the self-centering ability,and O-shaped steel dampers are applied to enhance the energy dissipation capacity and reparability of the structure.First,analytical equations are proposed to determine the behavior of the O-shaped dampers.Then,the MRWF system is numerically evaluated for five different models consisting of rocking walls with varying numbers and arrangements while keeping the total effective width of wall panels constant.The numerical results show that with an increase in the number of wall panels and a decrease in the wall width,the hysteretic behavior of the MRWF system tends to the ideal flag-shaped pattern,resulting in little damage to the beams,insignificant strain in the wall toe,negligible residual drifts and damage index of less than 0.2 under severe earthquakes.In contrast,the conventional model demonstrates extensive damage to the structural elements due to undesirable wall-to-frame interaction,which leads to a damage index of 0.78 and residual drifts of 0.42%under seismic loads.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the w...It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the water-saturated red sandstone, analyzed the influences of confining pressure and pore pressure on dilatancy property of water-saturated rock, and discussed the reasonable basis of the stress of dilatancy onset as a strength design parameter of rock engineering, finally established the prediction model of the stress of dilatancy onset under the impacts of confining pressure and pore pressure. The results show that the strength parameters(the stress of dilatancy onset and peak strength) and deformation parameters(axial strain and circumferential strain) of water-saturated sandstone increase with the confining pressure, and the relations can be fitted with a positive linear function. The cohesion and internal friction angle obtained from the stress of dilatancy onset decrease by 11.57% and 7.33%, respectively, when compared with those obtained from the peak strength. The strength parameters and deformation parameters of water-saturated sandstone decrease basically with the increase of pore pressure, in which the relations between strength parameters or axial strain and pore pressure can be fitted with a negative linear function. However, the relation between the peak circumferential strain and the pore pressure should be characterized by a negative exponential function, and the circumferential strain at dilatancy onset isn't affected by the pore pressure.展开更多
The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrou...The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit.展开更多
Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geom...Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.展开更多
As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4...As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, though little has been known about the mobilizing mechanism of these anions or ligands. The fractionation of RE resulted from hydrothermal alterations, i. e., fluid-rock interactions, are distinctive. One set of field data implies the preferential mobility of the LRE, while another set of field observations demonstrates the dominant mobilization of the HRE, and some theoretical prediction is not consistent with the field evidence. The Eu anomalies caused by fluid-rock interaction are complex and compelling explanation is not available due to inadequate experimental approaches. To know the exact behavior of RE during fluid-rock interaction and to solve the contradiction between some theoretical predictions and field observations, the following works remain to be done: (1) experimental investigations of RE mobility and fractionation as a function of fluid chemistry, e.g., the activity of F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, etc.; (2) experimental determination of RE mobility and fractionation as a function of T, P, pH, E h and water/rock ratios; (3) investigation of the mechanism and the controlling factors of RE partitioning between hydrothermal minerals and fluids. It was demonstrated that RE mobility is a potentially useful method for exploration.展开更多
文摘Rock behavior is usually run into in study on geological deformation, teetono-mineralization and civil engineering.Rock behavior contains its texture,structure and composition,rock property,and its occurrence background or situation. That is to say, temperature, compression,content of water and other liquid in rocks, boundary condition of rock block,straining rate etc.,which are closely related to the depth of occurrence of rock, influence on the rock behavior and deformation effects.
基金supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090)the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014)the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch)
文摘There are many fracture zones crossing the dam foundation of the Xiangjiaba Hydropower Project in southwestern China. Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties. In order to investigate the creep behavior of clastic rock, triaxial creep tests were conducted using a rock servo-controlling rheological testing machine. The results show that the creep behavior of clastic rock is significant at a high level of deviatoric stress, and less time-dependent deformation occurs at high confining pressure. Based on the creep test results, the relationship between axial strain and time under different confining pressures was investigated, and the relationship between axial strain rate and deviatoric stress was also discussed. The strain rate increases rapidly, and the rock sample fails eventually under high deviatoric stress. Moreover, the creep failure mechanism under different confining pressures was analyzed. The main failure mechanism of clastic rock is plastic shear, accompanied by a significant compression and ductile dilatancy. On the other band, with the determined parameters, the Burgers creep model was used to fit the creep curves. The results indicate that the Burgers model can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project.
基金sponsored by the National Science Fund for Distinguished Young Scholars(50825403)the National Key Basic Research Program of China(2010CB732003,2013CB036005)the Science Fund for Creative Research Group of the National Natural Science Foundation of China(51021001)
文摘Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.
基金supported by the National Basic Research Program of China (No.2013CB036003)the Graduate Research and Innovation Program of Jiangsu Province (No.CXLX13_943)
文摘Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No.2015ZX07205003)
文摘This paper investigates the leaching behavior of heavy metals(V,Pb,Cd,Cr,and As) from stone coal waste rocks with various particle sizes using dynamic leaching experiments.The results show that the dissolved concentrations of V and As initially increased and then slightly decreased as time progressed and that the dissolved concentrations of Pb,Cd,and Cr were high in the early stage before decreasing.The particle size of the stone coal waste rocks strongly influenced the heavy metal concentration in the leaching solutions.The effects of the particle size of the stone coal waste rocks on the dissolved concentrations of V,Pb,and As decreased in the order fine fraction > medium fraction > coarse fraction,and the effects of particle size on the dissolved concentrations of Cr and Cd decreased in the order medium fraction > coarse fraction > fine fraction and coarse fraction > medium fraction > fine fraction,respectively.The quantities of heavy metals dissolved from the stone coal waste rock with fine particle sizes were observed to decrease in the order V(17104.36 μg/kg) > As(609.41 μg/kg) > Pb(469.24 μg/kg) > Cr(56.35 μg/kg) > Cd(27.52 μg/kg),and the dissolution rates decreased in the order As(2.96%) > Pb(0.93%) > V(0.35%) > Cd(0.25%) > Cr(0.01%).The specific surface area,pore size of the stone coal waste rocks,and chemical forms of heavy metals also influenced the release of heavy metals from the stone coal waste rocks.Kinetic analysis showed that the dissolution of heavy metals fundamentally agreed with the rate equation controlled by the shrinking core model.The results of this study are expected to serve as a reference for the evaluation of heavy metals contamination from stone coal waste rocks.
文摘The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercept A on the log-log plot of variance: the former describes the irregularity and the later is statistically analogues to the slopes of asperities. In order to confirm the effects of these fractalparameters on the properties and mechanical behavior of rock joints, which have been observed in experiments under both normal andshear loadings, a theoretic model of rock joint is proposed on the basis of contact mechanics. The shape of asperity at contact is assumed to have a sinusoidal form in its representative scale r, with fractal dimension D and the intercept A. The model considers different local contact mechanisms, such as elastic deformation, frictional sliding and tensile fracture of the asperity. The empirical evolution law of surface damage developed in experiment is implemented into the model to up-date geometry of asperity in loading history. The effects of surface roughness characterized by D, A and re on normal and shear deformation of rock joint have been elaborated.
基金support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No.69A3551747118 of the Fixing America's Surface Transportation Act(FAST Act) of U.S.DoT FY2016
文摘Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.
基金Supported by the National Basic Research Program of China (2010CB226806)the Visiting Scholar Foundation of Key Laboratory for Exploitation of Southwestern Resources and Environmental Disaster Control Engineeringthe Outstanding Innovation Group Program of Anhui University of Science and Technology
文摘In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.
基金The University of Vigo is acknowledged for financing part of the first author’s PhD studiesthe Spanish Ministry of Economy and Competitiveness for funding of the project‘Deepening on the behaviour of rock masses:Scale effects on the stressestrain response of fissured rock samples with particular emphasis on post-failure’,awarded under Contract Reference No.RTI2018-093563-B-I00partially financed by means of European Regional Development Funds from the European Union(EU)。
文摘This study presents a calibration process of three-dimensional particle flow code(PFC3D)simulation of intact and fissured granite samples.First,laboratory stressestrain response from triaxial testing of intact and fissured granite samples is recalled.Then,PFC3D is introduced,with focus on the bonded particle models(BPM).After that,we present previous studies where intact rock is simulated by means of flatjoint approaches,and how improved accuracy was gained with the help of parametric studies.Then,models of the pre-fissured rock specimens were generated,including modeled fissures in the form of“smooth joint”type contacts.Finally,triaxial testing simulations of 1 t 2 and 2 t 3 jointed rock specimens were performed.Results show that both elastic behavior and the peak strength levels are closely matched,without any additional fine tuning of micro-mechanical parameters.Concerning the postfailure behavior,models reproduce the trends of decreasing dilation with increasing confinement and plasticity.However,the dilation values simulated are larger than those observed in practice.This is attributed to the difficulty in modeling some phenomena of fissured rock behaviors,such as rock piece corner crushing with dust production and interactions between newly formed shear bands or axial splitting cracks with pre-existing joints.
基金Project(11272359) supported by the National Natural Science Foundation of China
文摘To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.
文摘A multiple rocking wall-frame(MRWF)system,in which the wall panels are directly connected to the adjacent beams and foundation is presented herein.In the MRWF system,the unbonded post-tensioned(PT)tendons are used to promote the self-centering ability,and O-shaped steel dampers are applied to enhance the energy dissipation capacity and reparability of the structure.First,analytical equations are proposed to determine the behavior of the O-shaped dampers.Then,the MRWF system is numerically evaluated for five different models consisting of rocking walls with varying numbers and arrangements while keeping the total effective width of wall panels constant.The numerical results show that with an increase in the number of wall panels and a decrease in the wall width,the hysteretic behavior of the MRWF system tends to the ideal flag-shaped pattern,resulting in little damage to the beams,insignificant strain in the wall toe,negligible residual drifts and damage index of less than 0.2 under severe earthquakes.In contrast,the conventional model demonstrates extensive damage to the structural elements due to undesirable wall-to-frame interaction,which leads to a damage index of 0.78 and residual drifts of 0.42%under seismic loads.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金supported by the National Natural Science Foundation of China (Nos. 51404266 and 11502229)the National Program on Key Basic Research Project of China (No. 2013CB227900)
文摘It is important to study the dilatancy property of water-saturated rock for understanding the engineering behavior of loaded rock mass. This study carried out the uniaxial and triaxial compressive experiments on the water-saturated red sandstone, analyzed the influences of confining pressure and pore pressure on dilatancy property of water-saturated rock, and discussed the reasonable basis of the stress of dilatancy onset as a strength design parameter of rock engineering, finally established the prediction model of the stress of dilatancy onset under the impacts of confining pressure and pore pressure. The results show that the strength parameters(the stress of dilatancy onset and peak strength) and deformation parameters(axial strain and circumferential strain) of water-saturated sandstone increase with the confining pressure, and the relations can be fitted with a positive linear function. The cohesion and internal friction angle obtained from the stress of dilatancy onset decrease by 11.57% and 7.33%, respectively, when compared with those obtained from the peak strength. The strength parameters and deformation parameters of water-saturated sandstone decrease basically with the increase of pore pressure, in which the relations between strength parameters or axial strain and pore pressure can be fitted with a negative linear function. However, the relation between the peak circumferential strain and the pore pressure should be characterized by a negative exponential function, and the circumferential strain at dilatancy onset isn't affected by the pore pressure.
基金Supported by the Program for New Century Excellent Talents in University of China (NCET-07-0594)the National Natural Science Foundation of China (50874078 and 50804033)the Special Support for National Excellent Ph.D.Thesis (200959)
文摘The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit.
文摘Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented.
文摘As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, though little has been known about the mobilizing mechanism of these anions or ligands. The fractionation of RE resulted from hydrothermal alterations, i. e., fluid-rock interactions, are distinctive. One set of field data implies the preferential mobility of the LRE, while another set of field observations demonstrates the dominant mobilization of the HRE, and some theoretical prediction is not consistent with the field evidence. The Eu anomalies caused by fluid-rock interaction are complex and compelling explanation is not available due to inadequate experimental approaches. To know the exact behavior of RE during fluid-rock interaction and to solve the contradiction between some theoretical predictions and field observations, the following works remain to be done: (1) experimental investigations of RE mobility and fractionation as a function of fluid chemistry, e.g., the activity of F -, Cl -, CO 3 2-, HCO 3 -, CO 2, HPO 4 2-, HS -, S 2-, SO 4 2-, etc.; (2) experimental determination of RE mobility and fractionation as a function of T, P, pH, E h and water/rock ratios; (3) investigation of the mechanism and the controlling factors of RE partitioning between hydrothermal minerals and fluids. It was demonstrated that RE mobility is a potentially useful method for exploration.