Iron and manganese are the important redoxsensitive elements in the ocean. Previous studies have established a series of paleo-depositional redox proxies based on the form and content of iron in sedimentary rocks(e.g....Iron and manganese are the important redoxsensitive elements in the ocean. Previous studies have established a series of paleo-depositional redox proxies based on the form and content of iron in sedimentary rocks(e.g., degree of pyritization, FeHR/FeT, Fe/Al). These proxies were developed and applied on siliciclastic-rich marine sediments. Although marine carbonate rocks are generally considered to preserve the geochemical signals of ancient seawater, neither Fe nor Mn content in marine carbonate rocks(Fecarb, Mncarb) has been independently used as a proxy to quantify environmental cues in paleo-oceans. Both Fe and Mn are insoluble in oxic conditions(Fe_2O_3, Fe(OH)_3,MnO_2), while their reduced forms(Fe^(2+) and Mn^(2+)) are soluble. Therefore, oxic seawater should have low concentrations of dissolved Fe^(2+)and Mn^(2+), and accordingly carbonate rocks precipitated from oxic seawater should have low Fecarband Mncarb, and vice versa. To evaluate whether Fecarband Mncarbcan be used to quantify oxygen fugacity in seawater, we measured Fecarband Mncarbof Upper Devonian marine carbonate rocks collected from nine sections in South China. Fecarbof intraplatform basin samples wassignificantly higher than that of shelf samples, while shelf and basin samples had comparable Mncarb. The modeling result indicates that the dramatic difference in Fecarbcannot be explained by variation in oxygen fugacity between the shelf and basin seawater. Instead, both Fecarband Mncarb appear to be more sensitive to benthic flux from sediment porewater that is enriched in Fe^(2+)and Mn^(2+). Porewater Fe^(2+)and Mn^(2+)derive from bacterial iron and manganese reduction; flux was controlled by sedimentation rate and the depth of the Fe(Mn) reduction zone in sediments, the latter of which is determined by oxygen fugacity at the water–sediment interface. Thus, high Fecarbof the basin samples might be attributed to low sedimentation rate and/or low oxygen fugacity at the seafloor. However, invariant Mncarbof the shelf and basin samples might be the consequence of complete reduction of Mn in sediments. Our study indicates that marine carbonate rocks may not necessarily record seawater composition, particularly for benthic carbonate rocks. The influence of benthic flux might cause carbonate rocks' geochemical signals to deviate significantly from seawater values. Our study suggests that interpretation of geochemical data from carbonate rocks, including carbonate carbon isotopes, should consider the process of carbonate formation.展开更多
Field and laboratory analyses of carbonate rock samples from the Qiangtang Basin, Tibet, indicate that carbonate source rocks are mainly developed in the Middle Jurassic Xiali Formation and Upper Jurassic Suowa Format...Field and laboratory analyses of carbonate rock samples from the Qiangtang Basin, Tibet, indicate that carbonate source rocks are mainly developed in the Middle Jurassic Xiali Formation and Upper Jurassic Suowa Formation. Comprehensive studies showed that the Suowa Formation carbonate source rocks have a favorable hydrocarbon-generating potential. The abundance of organic matter in the carbonate rocks is controlled mainly by sedimentary environment and inorganic compounds in the rocks, which is higher in the restricted platform facies than in the open platform facies. Organic carbon contents decrease with increasing CaO contents in the source rocks.展开更多
Under the condition of simulated formation temperature and pressure, the compression and shear wave velocity of the tuffaceous conglomerates and rock-fragment sandstones of the reservoirs in K1t, k1n group of Cretaceo...Under the condition of simulated formation temperature and pressure, the compression and shear wave velocity of the tuffaceous conglomerates and rock-fragment sandstones of the reservoirs in K1t, k1n group of Cretaceous system in Tanan are measured. The effects of lithology, mineral content, density, porosity, shale content, and water saturation on the acoustic velocity of the athrogenic rock are studied. Within the limits of our observation, some rules are found: (1) the velocity of the fine tuffaceous conglomerates is remarkably greater than that of the tuffaceous rock-fragment sandstones with good physical property;(2) the compression velocity increases with fragment content, and decreases with quartz and feldspar content in the mud;(3) the compression velocity increases with density, especially, in tuffaceous rock-fragment sandstones, the velocity keeps a good relation with density in form of power function;(4) compression and shear wave velocity decreases with porosity and shale content, velocity of the tuffaceous rock-fragment sandstones keeps a good relation with porosity and shale content in form of negative linear function, but effects of shale content is only 1/5 to 1/10 of that of the porosity, hence can be neglected;(5) with porosity increases, compression wave velocity is relatively sensitive to fluid alternation, and the rang in which velocity varies keeps positive correlation with porosity. The result provides a foundation for the research of seismic and logging data evaluation approaches in athrogenic rock reservoirs, Haita basin.展开更多
基金supported by National Science Foundation of China (Nos. 41172001 and 41772015 to Sun and No. 41772359 to Shen)
文摘Iron and manganese are the important redoxsensitive elements in the ocean. Previous studies have established a series of paleo-depositional redox proxies based on the form and content of iron in sedimentary rocks(e.g., degree of pyritization, FeHR/FeT, Fe/Al). These proxies were developed and applied on siliciclastic-rich marine sediments. Although marine carbonate rocks are generally considered to preserve the geochemical signals of ancient seawater, neither Fe nor Mn content in marine carbonate rocks(Fecarb, Mncarb) has been independently used as a proxy to quantify environmental cues in paleo-oceans. Both Fe and Mn are insoluble in oxic conditions(Fe_2O_3, Fe(OH)_3,MnO_2), while their reduced forms(Fe^(2+) and Mn^(2+)) are soluble. Therefore, oxic seawater should have low concentrations of dissolved Fe^(2+)and Mn^(2+), and accordingly carbonate rocks precipitated from oxic seawater should have low Fecarband Mncarb, and vice versa. To evaluate whether Fecarband Mncarbcan be used to quantify oxygen fugacity in seawater, we measured Fecarband Mncarbof Upper Devonian marine carbonate rocks collected from nine sections in South China. Fecarbof intraplatform basin samples wassignificantly higher than that of shelf samples, while shelf and basin samples had comparable Mncarb. The modeling result indicates that the dramatic difference in Fecarbcannot be explained by variation in oxygen fugacity between the shelf and basin seawater. Instead, both Fecarband Mncarb appear to be more sensitive to benthic flux from sediment porewater that is enriched in Fe^(2+)and Mn^(2+). Porewater Fe^(2+)and Mn^(2+)derive from bacterial iron and manganese reduction; flux was controlled by sedimentation rate and the depth of the Fe(Mn) reduction zone in sediments, the latter of which is determined by oxygen fugacity at the water–sediment interface. Thus, high Fecarbof the basin samples might be attributed to low sedimentation rate and/or low oxygen fugacity at the seafloor. However, invariant Mncarbof the shelf and basin samples might be the consequence of complete reduction of Mn in sediments. Our study indicates that marine carbonate rocks may not necessarily record seawater composition, particularly for benthic carbonate rocks. The influence of benthic flux might cause carbonate rocks' geochemical signals to deviate significantly from seawater values. Our study suggests that interpretation of geochemical data from carbonate rocks, including carbonate carbon isotopes, should consider the process of carbonate formation.
文摘Field and laboratory analyses of carbonate rock samples from the Qiangtang Basin, Tibet, indicate that carbonate source rocks are mainly developed in the Middle Jurassic Xiali Formation and Upper Jurassic Suowa Formation. Comprehensive studies showed that the Suowa Formation carbonate source rocks have a favorable hydrocarbon-generating potential. The abundance of organic matter in the carbonate rocks is controlled mainly by sedimentary environment and inorganic compounds in the rocks, which is higher in the restricted platform facies than in the open platform facies. Organic carbon contents decrease with increasing CaO contents in the source rocks.
文摘Under the condition of simulated formation temperature and pressure, the compression and shear wave velocity of the tuffaceous conglomerates and rock-fragment sandstones of the reservoirs in K1t, k1n group of Cretaceous system in Tanan are measured. The effects of lithology, mineral content, density, porosity, shale content, and water saturation on the acoustic velocity of the athrogenic rock are studied. Within the limits of our observation, some rules are found: (1) the velocity of the fine tuffaceous conglomerates is remarkably greater than that of the tuffaceous rock-fragment sandstones with good physical property;(2) the compression velocity increases with fragment content, and decreases with quartz and feldspar content in the mud;(3) the compression velocity increases with density, especially, in tuffaceous rock-fragment sandstones, the velocity keeps a good relation with density in form of power function;(4) compression and shear wave velocity decreases with porosity and shale content, velocity of the tuffaceous rock-fragment sandstones keeps a good relation with porosity and shale content in form of negative linear function, but effects of shale content is only 1/5 to 1/10 of that of the porosity, hence can be neglected;(5) with porosity increases, compression wave velocity is relatively sensitive to fluid alternation, and the rang in which velocity varies keeps positive correlation with porosity. The result provides a foundation for the research of seismic and logging data evaluation approaches in athrogenic rock reservoirs, Haita basin.