Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to ma...The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.展开更多
An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model...An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model for estimating the face stability of a rock tunnel in the presence of rock mass stratification.The model uses the kinematical limit analysis approach combined with the block calculation technique.A virtual support force is applied to the tunnel face,and then solved using an optimization method based on the upper limit theorem of limit analysis and the nonlinear Hoek-Brown yield criterion.Several design charts are provided to analyze the effects of rock layer thickness on tunnel face stability,tunnel diameter,the arrangement sequence of weak and strong rock layers,and the variation in rock layer parameters at different positions.The results indicate that the thickness of the rock layer,tunnel diameter,and arrangement sequence of weak and strong rock layers significantly affect the tunnel face stability.Variations in the parameters of the lower layer of the tunnel face have a greater effect on tunnel stability than those of the upper layer.展开更多
Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most ex...Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities.展开更多
The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural plan...The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural planes,the distribution characteristics of tectonic geological factors and the stability of engineering structures according to the theory and research methods of rock mechanics,it will provide the engineering geological evidence for mining area exploited,meanwhile pledge the safety production.Shanmen silver deposit is a large epithermal deposit,it is controlled by NE to NNE strike faults.The stability of rock mass is acted on the tectonic movement and hot metalliferous brine in long-term.Especially,strength of rock mass becomes softened,muddy and loosed under the action of water,so the lower stability of rock mass is,the easier it can take place for harm of disaster threatening production safe of mining.For this reason,it is very important that drawing up a plan to lower harm for mine and protect.展开更多
The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimension...The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.展开更多
Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. ...Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. Influences of the supporting resistance on the rock bearing structure at the deep roadway were discussed. The results show that there is alternation of strong and weak strength-softening region in the surrounding rock of deep roadway. However, the increase in the supporting resistance cuts down the size of strength-softening region of surrounding rock, decreases its strength-softening degree, and im- proves the stress distribution condition of the surrounding rock mass. It is concluded that the supporting resistance can raise the self-supporting ability of surrounding rock through controlling its strength-softening so as to make the rock bearing structure of deep roadway stable.展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri...This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.展开更多
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failur...Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failure and underground pressure induced by coal mining in coal roof with different rock mass structures are analyzed. The test results indicate that the distances of first and periodic weighting of main roof and the height of caving and fracture zone decrease with the increment of fractures in roof rock mass. From whole to blocky and heavily fractured structures, abutment pressure ahead of working face reduces and the peak value of abutment pressure migrates to inside of roof rock mass.展开更多
Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for r...Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.展开更多
In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and prev...In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.展开更多
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect...Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.展开更多
Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a...Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.展开更多
Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of ...Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P...Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.展开更多
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ...As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.展开更多
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘The stability of rock slopes is considered crucial to public safety in highways passing through rock cuts, as well as to personnel and equipment safety in open pit mines. Slope instability and failures occur due to many factors such as adverse slope geometries, geological discontinuities, weak or weathered slope materials as well as severe weather conditions. External loads like heavy precipitation and seismicity could play a significant role in slope failure. In this paper, several rock mass classification systems developed for rock slope stability assessment are evaluated against known rock slope conditions in a region of Saudi Arabia, where slopes located in rugged terrains with complex geometry serve as highway road cuts. Selected empirical methods have been applied to 22 rock cuts that are selected based on their failure mechanisms and slope materials. The stability conditions are identified, and the results of each rock slope classification system are compared. The paper also highlights the limitations of the empirical classification methods used in the study and proposes future research directions.
基金supported by the Key Innovation Team Program of Innovation Talents Promotion Plan by MOST of China(Grant No.2016RA4059)the Science and Technology Project of Yunnan Provincial Transportation Department(No.25 of 2018)。
文摘An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model for estimating the face stability of a rock tunnel in the presence of rock mass stratification.The model uses the kinematical limit analysis approach combined with the block calculation technique.A virtual support force is applied to the tunnel face,and then solved using an optimization method based on the upper limit theorem of limit analysis and the nonlinear Hoek-Brown yield criterion.Several design charts are provided to analyze the effects of rock layer thickness on tunnel face stability,tunnel diameter,the arrangement sequence of weak and strong rock layers,and the variation in rock layer parameters at different positions.The results indicate that the thickness of the rock layer,tunnel diameter,and arrangement sequence of weak and strong rock layers significantly affect the tunnel face stability.Variations in the parameters of the lower layer of the tunnel face have a greater effect on tunnel stability than those of the upper layer.
基金Ontario Trillium Scholarship for supporting the doctorate program at Laurentian UniversityFinancial supports from the Natural Sciences and Engineering Research Council of Canada(NSERC CRD 470490-14)of Canada+1 种基金Nuclear Waste Management Organization(NWMO)Rio Tinto。
文摘Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities.
文摘The natural balance conditions will be disturbed and produce a series of problems when mineral deposit has mined.This paper has researched the engineering rock masses have been researched in this study,structural planes,the distribution characteristics of tectonic geological factors and the stability of engineering structures according to the theory and research methods of rock mechanics,it will provide the engineering geological evidence for mining area exploited,meanwhile pledge the safety production.Shanmen silver deposit is a large epithermal deposit,it is controlled by NE to NNE strike faults.The stability of rock mass is acted on the tectonic movement and hot metalliferous brine in long-term.Especially,strength of rock mass becomes softened,muddy and loosed under the action of water,so the lower stability of rock mass is,the easier it can take place for harm of disaster threatening production safe of mining.For this reason,it is very important that drawing up a plan to lower harm for mine and protect.
基金supported by the National Natural Science Foundation of China(No.52074296).
文摘The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.
文摘Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. Influences of the supporting resistance on the rock bearing structure at the deep roadway were discussed. The results show that there is alternation of strong and weak strength-softening region in the surrounding rock of deep roadway. However, the increase in the supporting resistance cuts down the size of strength-softening region of surrounding rock, decreases its strength-softening degree, and im- proves the stress distribution condition of the surrounding rock mass. It is concluded that the supporting resistance can raise the self-supporting ability of surrounding rock through controlling its strength-softening so as to make the rock bearing structure of deep roadway stable.
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
基金supported by Centre for Development of Advanced Computing (CDAC), Pune。
文摘This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金Supported by the National Natural Science Foundation of China(5 97740 0 3 and 49872 0 5 3 )
文摘Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failure and underground pressure induced by coal mining in coal roof with different rock mass structures are analyzed. The test results indicate that the distances of first and periodic weighting of main roof and the height of caving and fracture zone decrease with the increment of fractures in roof rock mass. From whole to blocky and heavily fractured structures, abutment pressure ahead of working face reduces and the peak value of abutment pressure migrates to inside of roof rock mass.
文摘Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.
文摘In pumped storage projects,the permeability of rock masses is a crucial parameter in engineering design and construction.The rock mass permeability coefficient(K)is influenced by various geological parameters,and previous studies aimed to establish an accurate relationship between K and geological parameters.This study uses the improved sparrow search algorithm(ISSA)to optimize the parameter settings of the deep extreme learning machine(DELM),constructing a prediction model with flexible parameter selection and high accuracy.First,the Spearman method is applied to analyze the correlation between geological parameters.A sample database is built by comprehensively selecting four geological indexes:burial depth,rock quality designation(RQD),fracture density characteristic index(FD),and rock mass integrity designation(RID).Hence,the defects of the sparrow search algorithm(SSA)are enhanced using the improved strategy,and the initial input weights of the DELM are optimized.Finally,the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the entire study area.The results showed that the predictive performance of the model is superior to that of the DELM and SSA–DELM.Therefore,this model successfully provides insights into the distribution characteristics of rock mass permeability at engineering sites.
基金the support of the National Natural Science Foundation of China(Nos.42207211,42202320 and 42172296)Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2304).
文摘Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.
基金Project(52109132)supported by the National Natural Science Foundation of ChinaProject(ZR2020QE270)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(JMDPC202204)supported by State Key Laboratory of Strata Intelligent Control,Green Mining Co-founded by Shandong Province and the Ministry of Science and TechnologyShandong University of Science and Technology,China。
文摘Toppling failure of rock mass/soil slope is an important geological and environmental problem.Clarifying its failure mechanism under different conditions has great significance in engineering.The toppling failure of a cutting slope occurred in a hydropower station in Kyushu,Japan illustrates that the joint characteristic played a significant role in the occurrence of rock slope tipping failure.Thus,in order to consider the mechanical properties of jointed rock mass and the influence of geometric conditions,a simplified analytical approach based on the limit equilibrium method for modeling the flexural toppling of cut rock slopes is proposed to consider the influence of the mechanical properties and geometry condition of jointed rock mass.The theoretical solution is compared with the numerical solution taking Kyushu Hydropower Station in Japan as one case,and it is found that the theoretical solution obtained by the simplified analysis method is consistent with the numerical analytical solution,thus verifying the accuracy of the simplified method.Meanwhile,the Goodman-Bray approach conventionally used in engineering practice is improved according to the analytical results.The results show that the allowable slope angle may be obtained by the improved Goodman-Bray approach considering the joint spacing,the joint frictional angle and the tensile strength of rock mass together.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProject(202203a07020011)supported by the Major Science and Technology Projects of Anhui Province,China+4 种基金Project(T2021137)supported by the National Talent Project,ChinaProject(T000508)supported by the Leading Talent Project of the Special Support Plan of Anhui Province,ChinaProject(GXXT-2021-075)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(2022AH010053)supported by the Excellent Scientific Research and Innovation Team of Universities in Anhui Province,ChinaProject(2022CX1004)supported by the Anhui University of Science and Technology Postgraduate Innovation Fund Project,China。
文摘Experiments on grouting-reinforced rock mass specimens with different particle sizes and features were carried out in this study to examine the effects of grouting reinforcement on the load-bearing characteristics of fractured rock mass.The strength and deformation features of grouting-reinforced rock mass were analyzed under different loading manners;the energy evolution mechanism of grouting-reinforced rock mass specimens with different particle sizes and features was investigated;the energy dissipation ratio and post-peak stress decreasing rate were employed to evaluate the bearing stability of grouting-reinforced rock mass.The results show that the strength and ductility of granite-reinforced rock mass(GRM)under biaxial loading are higher than that of sandstone-reinforced rock mass(SRM)under uniaxial loading.Besides,the energy evolution characteristics of grouting-reinforced rock mass under uniaxial and biaxial loading mainly could be divided into early,middle,and late stages.In the early stage,total,elastic,and dissipation energies were quite small with flatter curves;in the middle stage,elastic energy increased rapidly,whereas dissipation energy increased slowly;in the late stage,dissipation energy increased sharply.The energy dissipation ratio was used to represent the pre-peak plastic deformation.Under uniaxial loading,this ratio increased as the particle size increased and the pre-peak plastic deformation of grouting-reinforced rock mass became larger;under biaxial loading,it dropped as the particle size increased,and the pre-peak plastic deformation of grouting-reinforced rock mass became smaller.The post-peak stress decline rate A_(v) was used to assess the post-peak bearing performance of grouting-reinforced rock mass.Under uniaxial loading,parameter A_(v) exhibited reduction as the particle size kept increasing,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was greater,and the bearing capacity was greater;under biaxial loading,A_(v) increased with the particle size,and the ability of post-peak of grouting-reinforced rock mass to allow deformation development was low and the bearing capacity was reduced.The findings are considered instrumental in improving the stability of the roadway-surrounding rock by granite and sandstone grouting.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.
基金supported by the Xi’an Key Laboratory of Geotechnical and Underground Engineering Open Fund Project (XKLGUEKF20-03)the Natural Science Basic Research Program of Shaanxi Province General Project-Youth Project(2024JC-YBQN-0258)。
文摘As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.