The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the...The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.展开更多
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to est...The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.展开更多
In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sed...In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.展开更多
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models...Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.展开更多
The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along ...The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available.展开更多
Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geo...Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excava- tions, and the instructions-guidelines for the primary support measures for flysch layer qualitatively. In order to investigate the properties of flysch rock mass, 12 tunnels of Egnatia Highway, constructed in Northern Greece, were examined considering the data obtained from the design and construction records. Flysch formations are classified thereafter in 11 rock mass types (I-XI), according to the siltstone -sandstone proportion and their tectonic disturbance. A special geological strength index (GSI) chart for heterogeneous rock masses is used and a range of geotechnical parameters for every flysch type is presented. Standardization tunnel behaviour for every rock mass type of flysch is also presented, based on its site-specific geotechnical characteristics such as structure, intact rock strength, persistence and complexity of discontinuities. Flysch, depending on its types, can be stable even under noticeable overburden depth, and exhibit wedge sliding and wider chimney type failures or cause serious deformation even under thin cover. Squeezing can be observed under high overburden depth. The magnitude of squeezing and tunnel support requirements are also discussed for various flysch rock mass types under different overburdens. Detailed principles and guidelines for selecting immediate support mea- sures are proposed based on the principal tunnel behaviour mode and the experiences obtained from these 12 tunnels. Finally, the cost for tunnel support from these experiences is also presented.展开更多
The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks(well interlocked undisturbed rock mass with blocks formed by three or ...The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks(well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling(SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method(DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the preexisting joints is generated by employing discrete fracture network(DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation(RQD), joint spacing, areal fracture intensity(P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index(GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness.展开更多
A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data s...A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength(UCS)(0.15 MPa 〈 σ_(rc) 〈156 MPa) and various rock types. Rock mass cuttability index(RMCI) is correlated with shaft resistance(r_s) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus r_s equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami(2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.展开更多
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-s...This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-scale rock mass failures are introduced,including coal pillars.The damage-initiation,spalling-limit approach is compared to the coal pillar database.New comparisons of estimating the geological strength index(GSI)and relationships to estimate the Hoek-Brown failure criterion parameters,mb,s and a,are presented.展开更多
Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high...Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength(UCS) and rock mass cuttability index(RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a comprehensive database of 178 full-scale load tests is compiled by adding a data set(n = 72)collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017).Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS/RMCI. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data(series 3 in Rezazadeh and Eslami(2017)). Since rock-socketed shafts are supported by rock mass(not intact rock),a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, based upon RMR and RQD to consider the effect of the rock mass properties.展开更多
文摘The geological strength index(GSI) system,widely used for the design and practice of mining process,is a unique rock mass classification system related to the rock mass strength and deformation parameters based on the generalized Hoek-Brown and Mohr-Coulomb failure criteria.The GSI can be estimated using standard chart and field observations of rock mass blockiness and discontinuity surface conditions.The GSI value gives a numerical representation of the overall geotechnical quality of the rock mass.In this study,we propose a method to determine the GSI quantitatively using photographic images of in situ jointed rock mass with image processing technology,fractal theory and artificial neural network(ANN).We employ the GSI system to characterize the jointed rock mass around the working in a coal mine.The relative error between the proposed value and the given value in the GSI chart is less than 3.6%.
基金supported by the National Natural Science Foundation of China (Grant No. 41002112)Key teaching construction projects of Wuhan Institution of Technology (J201403)+2 种基金the Chinese Postdoctoral Science Foundation (Grant No. 2017M621783, 2018T110527)the International Postdoctoral Exchange Fellowship Program by China Postdoctoral Council (Year 2017)the Startup Foundation for Introducing Talent of NUIST (Grant No. 2017r045)
文摘The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed.
文摘In this paper, three rock types including Sandstone, Mudstone, and Crystalline Gypsum were part of a laboratory study conducted to develop a dataset for predicting the unconfined compressive strength of UAE intact sedimentary rock specimens. Four hundred nineteen rock samples from various areas along the coastal region of the UAE were collected and tested for the development of this dataset and evaluation of models. From the statistical analysis of the data, regression equations were established among rock parameters and correlations were expressed and compared by the ones proposed in literature.
文摘Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy.
基金Rio Tinto for sponsoring much of the work outlined in this article through the Rio Tinto Centre for Underground Mine Construction (an affiliate of CEMI)the financial contributions of NSERC (Natural Sciences and Engineering Research Council of Canada)
文摘The Hoek-Brown (HB) failure criterion and the geological strength index (GSI) were developed for the estimation of rock mass strength in jointed and blocky ground where rock mass failure is dominated by sliding along open joints and rotation of rock blocks. In massive, veined and moderately jointed rock in which rock blocks cannot form without failure of intact rock, the approach to obtain HB parameters must be modified. Typical situations when these modifications are required include the design of pillars, excavation and cavern stability, strainburst potential assessment, and tunnel support in deep underground conditions (around σ1/σci > 0.15, where σ1 is the major principal compressive stress and σci is the unconfined compressive strength of the homogeneous rock) in hard brittle rocks with GSI ≥ 65. In this article, the strength of massive to moderately jointed hard rock masses is investigated, and an approach is presented to estimate the rock mass strength envelope using laboratory data from uniaxial and triaxial compressive strength tests without reliance on the HB-GSI equations. The data from tests on specimens obtained from massive to moderately jointed heterogeneous (veined) rock masses are used to obtain the rock and rock mass strengths at confining stress ranges that are relevant for deep tunnelling and mining;and a methodology is presented for this purpose from laboratory data alone. By directly obtaining the equivalent HB rock mass strength envelope for massive to moderately jointed rock from laboratory tests, the HB-GSI rock mass strength estimation approach is complemented for conditions where the GSIequations are not applicable. Guidance is also provided on how to apply the proposed approach when laboratory test data are not or not yet available.
文摘Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excava- tions, and the instructions-guidelines for the primary support measures for flysch layer qualitatively. In order to investigate the properties of flysch rock mass, 12 tunnels of Egnatia Highway, constructed in Northern Greece, were examined considering the data obtained from the design and construction records. Flysch formations are classified thereafter in 11 rock mass types (I-XI), according to the siltstone -sandstone proportion and their tectonic disturbance. A special geological strength index (GSI) chart for heterogeneous rock masses is used and a range of geotechnical parameters for every flysch type is presented. Standardization tunnel behaviour for every rock mass type of flysch is also presented, based on its site-specific geotechnical characteristics such as structure, intact rock strength, persistence and complexity of discontinuities. Flysch, depending on its types, can be stable even under noticeable overburden depth, and exhibit wedge sliding and wider chimney type failures or cause serious deformation even under thin cover. Squeezing can be observed under high overburden depth. The magnitude of squeezing and tunnel support requirements are also discussed for various flysch rock mass types under different overburdens. Detailed principles and guidelines for selecting immediate support mea- sures are proposed based on the principal tunnel behaviour mode and the experiences obtained from these 12 tunnels. Finally, the cost for tunnel support from these experiences is also presented.
基金the Nuclear Waste Management Organization (NWMO) of Canadathe National Science and Engineering Research Council (NSERC)+1 种基金the Canadian Ministry of National Defence (DND)the RMC Green Team for funding this research
文摘The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks(well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling(SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method(DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the preexisting joints is generated by employing discrete fracture network(DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation(RQD), joint spacing, areal fracture intensity(P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index(GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness.
基金support of Yapi Merkezi Construction and Industry Inc.,Istanbul,Turkey
文摘A new comprehensive set of data(n = 178) is compiled by adding a data set(n = 72) collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017). Then, the compiled data set is evaluated regardless of the variation in lithology/strength. The proposed empirical equation in this study comprises a wider range of uniaxial compressive strength(UCS)(0.15 MPa 〈 σ_(rc) 〈156 MPa) and various rock types. Rock mass cuttability index(RMCI) is correlated with shaft resistance(r_s) to predict the shaft resistance of rock-socketed piles. The prediction capacity of the RMCI versus r_s equation is also found to be in a fair good agreement with the presented data in Rezazadeh and Eslami(2017). Since the RMCI is a promising parameter in the prediction of shaft resistance, the researchers in the rock-socketed pile design area should consider this parameter in the further investigations.
文摘This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design.Data from various large-scale rock mass failures are introduced,including coal pillars.The damage-initiation,spalling-limit approach is compared to the coal pillar database.New comparisons of estimating the geological strength index(GSI)and relationships to estimate the Hoek-Brown failure criterion parameters,mb,s and a,are presented.
文摘Semi-deep foundations socketed in rocks are considered to be a viable option for the foundations in the presence of heavy loads imposed by high-rise buildings and special structures, due to the low settlement and high bearing capacity. In this study, the unconfined compressive strength(UCS) and rock mass cuttability index(RMCI) have been applied to investigating the shaft bearing capacity. For this purpose, a comprehensive database of 178 full-scale load tests is compiled by adding a data set(n = 72)collected by Arioglu et al.(2007) to the data set(n = 106) presented in Rezazadeh and Eslami(2017).Using the database, the applicability and accuracy of the existing empirical methods are evaluated and new relations are derived between the shaft bearing capacity and UCS/RMCI. Moreover, a general equation in case of unknown rock types is proposed and it is verified by another set of data(series 3 in Rezazadeh and Eslami(2017)). Since rock-socketed shafts are supported by rock mass(not intact rock),a reduction factor for the compressive strength is suggested and verified in which the effect of discontinuities is considered using the modified UCS, based upon RMR and RQD to consider the effect of the rock mass properties.