期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fracture development around deep underground excavations: Insights from FDEM modelling 被引量:27
1
作者 Andrea Lisjak Daniel Figi Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期493-505,共13页
Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage deve... Over the past twenty years, there has been a growing interest in the development of numerical modelsthat can realistically capture the progressive failure of rock masses. In particular, the investigation ofdamage development around underground excavations represents a key issue in several rock engineeringapplications, including tunnelling, mining, drilling, hydroelectric power generation, and the deepgeological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finitediscreteelement method (FDEM) code to simulate the fracturing mechanisms associated with theexcavation of underground openings in brittle rock formations. A brief review of the current state-of-theartmodelling approaches is initially provided, including the description of selecting continuum- anddiscontinuum-based techniques. Then, the influence of a number of factors, including mechanical and insitu stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for threedifferent geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropicrock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy onthe development of an excavation damaged zone (EDZ) around a tunnel excavated in a layered rockformation is considered. Finally, the interaction mechanisms between two large caverns of an undergroundhydroelectric power station are investigated, with particular emphasis on the rock mass responsesensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEMsimulations can provide unique geomechanical insights in cases where an explicit consideration offracture and fragmentation processes is of paramount importance. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 tunnelling Caverns rock fracturing excavation damaged zone(EDZ) Hybrid finite-discrete element method(FDEM) Numerical modelling
下载PDF
Failure responses of rock tunnel faces during excavation through the fault-fracture zone 被引量:3
2
作者 Zeyu Li Hongwei Huang +1 位作者 Mingliang Zhou Dongming Zhang 《Underground Space》 SCIE EI CSCD 2023年第3期166-181,共16页
It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel fac... It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel face during excavation through the FFZ.A numerical study was conducted to compare a physical model test and validate the feasibility of using the MPM in simulating tunnel face failure.One hundred ninety numerical simulation cases were constructed to represent a rock tunnel excavation project with different site con-figurations.The simulation results suggest that the cohesion and the friction angle significantly influence failure responses.The tunnel cover depth can magnify the failure responses,and the FFZ thickness significantly affects the mobilized rock mass volume when the FFZ consists of a weak rock mass.The numerical simulation results suggest three deformation patterns:face bulge,partial failure,and slide collapse.The failure responses can be characterized by stress arch,slip surface,angle of reposing,and influence range.The insights suggested by the face failure responses during excavation through the FFZ can aid field engineers in determining the scope of possible damage,and in establishing emergency measures to minimize losses if such failure occurs. 展开更多
关键词 tunnel face failure rock tunnel excavation Large deformation Fracture fault zone Material point method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部