期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
System reliability analysis of seismic pseudo-static stability of rock wedge based on nonlinear Barton–Bandis criterion 被引量:3
1
作者 ZHAO Lian-heng JIAO Kang-fu +1 位作者 LI De-jian ZUO Shi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3450-3463,共14页
Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calcula... Based on the nonlinear Barton–Bandis(B–B)failure criterion,this study considers the system reliability of rock wedge stability under the pseudo-static seismic load.The failure probability(Pf)of the system is calculated based on the Monte−Carlo method when considering parameter correlation and variability.Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability.The relationships among the failure probability,safety factor(Fs),and variation coefficient are explored,and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn.The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability,but correlation increases system reliability or decreases system reliability affected by other parameters.Under the pseudo-static seismic action,sliding on both planes is the main failure mode of wedge system.In addition,the parameters with relatively high sensitivity are two angles related to the joint dip.When the coefficient of variation is consistent,the probability of system failure is a function of the safety factor. 展开更多
关键词 3D rock wedge seismic pseudo-static stability nonlinear Barton–Bandis failure criterion system reliability sensitivity analysis stability probability curves
下载PDF
A numerical study of rock burst development and strain energy release 被引量:16
2
作者 Wang Li Lu ZhongLiang Gao Qian 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期675-680,共6页
We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the ... We consider rock burst to be a dynamic disaster similar to earthquakes,rapid land sliding,or coal mine gas dynamic disasters.Multi-scale mechanical principles imply the same mechanism of damage evolution proceeds the catastrophe.Damage may occur at various scales from a meso-scopic scale to a macroscopic,or engineering scale.Rock burst is a catastrophe at the scale of the engineering structure,such as a tunnel cross section or the work face of a long wall mine.It results from dynamic fracture of the structure where microscopic damage nucleates,expands,and finally propagates into a macroscopic sized fracture band.Rock burst must,therefore,undergo a relatively long development,or gestation,time before its final appearance.In this paper,a study of rock burst within a deeply buried tunnel by numerical methods is described.The results show that during rock burst gestation the distributed microscopic damage in the rock surrounding the tunnel localizes,intersects,and then evolves into a set of concentrated ''V'' shaped damage bands.These concentrated damage bands propagate in the direction of maximum shear as shearing slide bands take shape.Rock burst happens within the wedge separated by the shear bands from the native tunnel rock.An analysis of the wedge fracture shows that the unloading effects result in rock burst and rapid release of the strain energy.The implications for rock burst prediction in tunnels are that:(1) rock burst develops in the upper arch corners of in the tunnel cross section prior to developing in other zones,so good attention must be paid there;(2) all monitoring,prevention,and treatment of rock burst should be done during the gestation phase;(3) the shear bands contain abundant information concerning the physics and mechanics of the process and they are the foundation of physical and mechanical monitoring of acoustic emission,micro seismic events,stress,and the like.Thus a special study of the shearing mechanism is required. 展开更多
关键词 rock burst Gestation Shearing sliding bands Wedge Strain energy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部