In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were con...In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.展开更多
The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demo...The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.展开更多
The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum...The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model.展开更多
The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 alu...The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 aluminum alloy creep test in tension is accomplished at 155 ℃, and the creep curves are obtained. The material constants of the mechanism-based creep constitutive equations are determined through experiments. The age forming process and the spring-backs of 7B04 aluminum alloy plates are analyzed using the commercial finite element software ABAQUS. The effects of plate thickness and forming time on spring-backs are researched. The spring-backs decrease with the increase of plate thickness and forming time. The test results verify the reliability of the finite element method (FEM) analysis.展开更多
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv...Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.展开更多
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f...The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.展开更多
This paper was designed to analyze on the data, which was obtained from 'National Physique Fitness Investigation Report (2000)'. In order to get the typical body form and figure type of the middle age and aged...This paper was designed to analyze on the data, which was obtained from 'National Physique Fitness Investigation Report (2000)'. In order to get the typical body form and figure type of the middle age and aged people, it was focused on the body form data of this group (age 40 - 60). After calculation and analyzing, the distinguishing feature of body form and the distribution of figure type were deduced. Finally, the re-classification of body form for Chinese middle age and aged people was suggested. It as also suggested that a new garment size series especially for the middle age and aged should be built to fit for these people. This conclusion would be useful and significant to design and production for clothing company, especially that who take the aged people as their target consumer.展开更多
A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation...A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.展开更多
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f...Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.展开更多
Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming...Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming,CAF has many advantages of low residual stress,excellent dimensional stability,good service performance and short production cycle.It is an optimal technique for precise manufacturing for shape and properties of large-scale complicated thinwalled components of light-weight and high strength aluminum alloys in the aviation and aerospace industries.Nevertheless,CAF has an inevitable disadvantage that a large amount of springback occurs after unloading,which brings a challenge on the accurate shape forming and property tailoring of components.Therefore,how to achieve accurate prediction and control of springback has always been a bottleneck hindering the development of CAF to more industrial applications.After the factors of affecting springback and measures of reducing springback are summarized from the internal and external aspects,constitutive models for predicting springback and springback compensation methods for CAF of aluminum alloy panel components are reviewed.Then,a review of research progresses on tool design for CAF is presented.Finally,in view of the key issue that it is difficult to predict and control the shape and properties of components during CAF,the technical challenges are discussed and future development trends of CAF are prospected.展开更多
The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress...The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress relaxation aging tests, the relationship between initial temper and CAF formability is investigated for an Al-Zn-Mg-Cu alloy at 165 ℃ for 18 h. Three tempers are selected as the initial tempers in CAF, viz., solution, retrogression and re-solution. The CAF formability of this alloy with initial temper of retrogression is the best, and the creep strain of the retrogression tempered specimen after creep aging of 18 h is about 1.21 and 1.34 times than that of the solution and the re-solution tempered specimens, respectively. The calculated stress exponents of this alloy with three initial tempers range from 7.3 to 9.5, indicating that the CAF of this alloy is mainly controlled by the dislocation creep. The various formability for three initial tempers are attributed to different inhibitions of the transgranular precipitates on the dislocation movement. For the retrogression temper, the initial fine and uniformly distributed precipitates are seriously coarsened after 6 h of CAF, which minimally inhibit the dislocation movement. While, for the re-solution temper, the fine precipitates are re-precipitated in the matrix of the alloy, which observably hinder the dislocation movement and lead to the worst formability.展开更多
The previous investigation has proved that their existed pharmacokinetic difference between the different crystal forms of the polymorphic drugs after oral administration.However,no systemic investigations have been m...The previous investigation has proved that their existed pharmacokinetic difference between the different crystal forms of the polymorphic drugs after oral administration.However,no systemic investigations have been made on the change of this pharmacokinetic difference,resulted either from the physiological or from the pathological factors.In this paper,we used polymorphic nimodipine(Nim) as a model drug and investigated the effect of age difference(2- and 9-month old) on the pharmacokinetics after oral delivery in rats.As the results shown,for L-form of Nim(L-Nim),the AUC0–24 hin 2-month-old rats was 343.68747.15 ng h/m L,which is 23.36% higher than that in 9-month-old rats.For H-form of Nim(H-Nim),the AUC0–24 hin 2-monthold rats was 140.91719.47 ng h/m L,which is 54.64% higher than that in 9-month-old rats.The AUC0–24 h ratio between H-Nim and L-Nim was 2.44 in 2-month-old rats and 3.06 in 9-month-old rats.Since age difference could result in unparallelled change of the absorption and bioavailability of the polymorphic drugs,the results in this experiment are of value for further investigation of crystal form selection in clinical trials and rational clinical application of the polymorphic drugs.展开更多
Since the 1970s, a type of massive rugose coral having very special interwalls in the Mapingian and Chihsian strata in many regions of China has been described and reported in succession. In 1982, WU Wang-shi and ZHOU...Since the 1970s, a type of massive rugose coral having very special interwalls in the Mapingian and Chihsian strata in many regions of China has been described and reported in succession. In 1982, WU Wang-shi and ZHOU Kang-jie established a new family Kepingophyllidae to represent such a type of rugose coral. Later on, WU Wang-shi展开更多
In this study,we investigated(i)the differences in flower colour composition among growth forms of woody plants in China and(ii)the influences of biogeographic regions,evolutionary age and climatic conditions on geogr...In this study,we investigated(i)the differences in flower colour composition among growth forms of woody plants in China and(ii)the influences of biogeographic regions,evolutionary age and climatic conditions on geographic variation in the proportions of different flower colours.Using distribution maps and flower colour information(white,red,yellow,yellow-green,green and blue-purple)of 7673 Chinese woody plant species and a dated genus-level phylogenetic tree,we compared flower colour composition among different growth forms(shrubs,trees and lianas).We further estimated the relationships of geographical patterns in the proportions of different flower colours with seven different biogeographic regions,evolutionary age and different contemporary climatic variables.Compared with trees or lianas,shrubs showed a higher proportion of species with anthocyanin-based red and blue-purple flowers.The geographic patterns of flower colour composition of woody plants in China were strongly influenced by regional effects and contemporary climate,especially precipitation and ultraviolet B irradiance.The proportion of species with presumably bee-pollinated yellow and blue-purple flowers and stress tolerant anthocyanin-based red and blue-purple flower colours tended to be high in the northwestern part of China.Green flowers tended to evolve earlier than others,but evolutionary age had quite weak influences on the geographic pattern of flower colours.Our results reflect both evolutionary and environmental constraints on the distribution of flower colours of woody plants in China.展开更多
基金Project(2010CB731700)supported by the National Basic Research Program of China
文摘In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.
基金Project (NCET-10-0278) supported by the Program for New Century Excellent Talents in University, ChinaProject (20102024) supported by the Natural Science Foundation of Liaoning Province, China
文摘The comparative experiments of age forming and artificial aging of 2A12 aluminum alloy were carried out. The effect of the age forming on the microstructure and mechanical properties was investigated. The results demonstrate that the grains are further squashed and elongated compared with artificial aging due to the existence of the applied stress during the age forming. Meanwhile, the precipitated phases change from circle shape with random orientation of age forming to long strip shape with uniform orientation of artificial aging. The dislocation configuration in samples changes from ring dislocation or helical dislocation of the artificial aging to long and straight dislocation of the age forming. Otherwise, age forming slightly reduces the tensile properties and fracture toughness of the alloy and enhances its fatigue crack growth rate.
文摘The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model.
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
基金National Natural Science Foundation of China (50675010)
文摘The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 aluminum alloy creep test in tension is accomplished at 155 ℃, and the creep curves are obtained. The material constants of the mechanism-based creep constitutive equations are determined through experiments. The age forming process and the spring-backs of 7B04 aluminum alloy plates are analyzed using the commercial finite element software ABAQUS. The effects of plate thickness and forming time on spring-backs are researched. The spring-backs decrease with the increase of plate thickness and forming time. The test results verify the reliability of the finite element method (FEM) analysis.
文摘Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.
基金Project(2017YFB0306300)supported by the National Key R&D Program of ChinaProjects(51601060,51675538)supported by the National Natural Science Foundation of China。
文摘The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour.
文摘This paper was designed to analyze on the data, which was obtained from 'National Physique Fitness Investigation Report (2000)'. In order to get the typical body form and figure type of the middle age and aged people, it was focused on the body form data of this group (age 40 - 60). After calculation and analyzing, the distinguishing feature of body form and the distribution of figure type were deduced. Finally, the re-classification of body form for Chinese middle age and aged people was suggested. It as also suggested that a new garment size series especially for the middle age and aged should be built to fit for these people. This conclusion would be useful and significant to design and production for clothing company, especially that who take the aged people as their target consumer.
基金the National Key R&D Program of China(No.2017YFB0306300)the National Natural Science Foundation of China(Nos.51675538,51601060)+1 种基金the State Key Laboratory of High-performance Complex Manufacturing,China(No.ZZYJKT2018-18)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2018zzts151).
文摘A unified constitutive model is presented to predict the recently observed“multi-stage”creep behavior of Al−Li−S4 alloy.The corresponding microstructural variables related to the yield strength and creep deformation of the alloy during the creep ageing process,including dislocations and multiple precipitates,have been characterized in detail by X-ray diffraction(XRD)and transmission electron microscopy(TEM).For the yield strength,the model considers the multiphase strengthening behavior of the alloy based on strengthening mechanisms,which includes shearable T1 precipitate strengthening,non-shearable T1 precipitate strengthening andθ′precipitate strengthening.Based on creep deformation mechanism,the“multi-stage”creep behavior of the alloy is predicted by introducing the effects of interacting microstructural variables,including the radius of multiple precipitates,dislocation density and solute concentration,into the creep stress−strain model.It is concluded that the results calculated by the model are in a good agreement with the experimental data,which validates the proposed model.
基金Project(2021YFB3400903) supported by the National Key R&D Program of ChinaProject(1053320211480) supported by the Science and Technology Innovation Project of Graduate Students of Central South University,China。
文摘Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process.
基金financial support from the Key Program of the National Natural Science Foundation of China (No.51235010)the National Science Fund for Excellent Young Scholars (No.51522509)the National Natural Science Foundation of China (NO.51905424)
文摘Creep age forming(CAF)is an advanced forming technology that combines creep deformation and age hardening processes.When compared with the conventional forming technologies including roll bending and shot-peen forming,CAF has many advantages of low residual stress,excellent dimensional stability,good service performance and short production cycle.It is an optimal technique for precise manufacturing for shape and properties of large-scale complicated thinwalled components of light-weight and high strength aluminum alloys in the aviation and aerospace industries.Nevertheless,CAF has an inevitable disadvantage that a large amount of springback occurs after unloading,which brings a challenge on the accurate shape forming and property tailoring of components.Therefore,how to achieve accurate prediction and control of springback has always been a bottleneck hindering the development of CAF to more industrial applications.After the factors of affecting springback and measures of reducing springback are summarized from the internal and external aspects,constitutive models for predicting springback and springback compensation methods for CAF of aluminum alloy panel components are reviewed.Then,a review of research progresses on tool design for CAF is presented.Finally,in view of the key issue that it is difficult to predict and control the shape and properties of components during CAF,the technical challenges are discussed and future development trends of CAF are prospected.
基金supported by the National Natural Science Foundation of China for Key Program (51235010)the National Science Fund for Excellent Young Scholars (51522509) of China+2 种基金Fundamental Research Funds for the Central Universities (3102014KYJD001) of Chinathe Marie Curie International Research Staff Exchange Scheme (IRSES, MatProFuture, project no: 318968)within the 7th EC Framework Programme (FP7)the ‘‘111" Project (B08040)
文摘The initial temper of the material may directly affect the whole creep age forming (CAF) process. In terms of creep deformation and stress relaxation, using the constant-stress creep aging and constant-strain stress relaxation aging tests, the relationship between initial temper and CAF formability is investigated for an Al-Zn-Mg-Cu alloy at 165 ℃ for 18 h. Three tempers are selected as the initial tempers in CAF, viz., solution, retrogression and re-solution. The CAF formability of this alloy with initial temper of retrogression is the best, and the creep strain of the retrogression tempered specimen after creep aging of 18 h is about 1.21 and 1.34 times than that of the solution and the re-solution tempered specimens, respectively. The calculated stress exponents of this alloy with three initial tempers range from 7.3 to 9.5, indicating that the CAF of this alloy is mainly controlled by the dislocation creep. The various formability for three initial tempers are attributed to different inhibitions of the transgranular precipitates on the dislocation movement. For the retrogression temper, the initial fine and uniformly distributed precipitates are seriously coarsened after 6 h of CAF, which minimally inhibit the dislocation movement. While, for the re-solution temper, the fine precipitates are re-precipitated in the matrix of the alloy, which observably hinder the dislocation movement and lead to the worst formability.
基金supported by the National Natural Science Foundation of China,China (No.21176173)Tianjin Natural Science Foundation,China (No.14JCYBJC29100)
文摘The previous investigation has proved that their existed pharmacokinetic difference between the different crystal forms of the polymorphic drugs after oral administration.However,no systemic investigations have been made on the change of this pharmacokinetic difference,resulted either from the physiological or from the pathological factors.In this paper,we used polymorphic nimodipine(Nim) as a model drug and investigated the effect of age difference(2- and 9-month old) on the pharmacokinetics after oral delivery in rats.As the results shown,for L-form of Nim(L-Nim),the AUC0–24 hin 2-month-old rats was 343.68747.15 ng h/m L,which is 23.36% higher than that in 9-month-old rats.For H-form of Nim(H-Nim),the AUC0–24 hin 2-monthold rats was 140.91719.47 ng h/m L,which is 54.64% higher than that in 9-month-old rats.The AUC0–24 h ratio between H-Nim and L-Nim was 2.44 in 2-month-old rats and 3.06 in 9-month-old rats.Since age difference could result in unparallelled change of the absorption and bioavailability of the polymorphic drugs,the results in this experiment are of value for further investigation of crystal form selection in clinical trials and rational clinical application of the polymorphic drugs.
文摘Since the 1970s, a type of massive rugose coral having very special interwalls in the Mapingian and Chihsian strata in many regions of China has been described and reported in succession. In 1982, WU Wang-shi and ZHOU Kang-jie established a new family Kepingophyllidae to represent such a type of rugose coral. Later on, WU Wang-shi
基金supported by the National Key Research Develop Program of China(2019YFC0507501,2017YFA0605101)National Natural Science Foundation of China(32025025,31988102).
文摘In this study,we investigated(i)the differences in flower colour composition among growth forms of woody plants in China and(ii)the influences of biogeographic regions,evolutionary age and climatic conditions on geographic variation in the proportions of different flower colours.Using distribution maps and flower colour information(white,red,yellow,yellow-green,green and blue-purple)of 7673 Chinese woody plant species and a dated genus-level phylogenetic tree,we compared flower colour composition among different growth forms(shrubs,trees and lianas).We further estimated the relationships of geographical patterns in the proportions of different flower colours with seven different biogeographic regions,evolutionary age and different contemporary climatic variables.Compared with trees or lianas,shrubs showed a higher proportion of species with anthocyanin-based red and blue-purple flowers.The geographic patterns of flower colour composition of woody plants in China were strongly influenced by regional effects and contemporary climate,especially precipitation and ultraviolet B irradiance.The proportion of species with presumably bee-pollinated yellow and blue-purple flowers and stress tolerant anthocyanin-based red and blue-purple flower colours tended to be high in the northwestern part of China.Green flowers tended to evolve earlier than others,but evolutionary age had quite weak influences on the geographic pattern of flower colours.Our results reflect both evolutionary and environmental constraints on the distribution of flower colours of woody plants in China.