Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-depend...Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.展开更多
The present study deals with dynamic analysis of arch concrete dams,taking rotational components of earthquakes into account.A modified methodology was used to evaluate the rotational components of the earthquake.The ...The present study deals with dynamic analysis of arch concrete dams,taking rotational components of earthquakes into account.A modified methodology was used to evaluate the rotational components of the earthquake.The translational components of the earthquake have been used in to obtain the rotational components of the earthquake,based on the intersecting isotropic elastic wave propagation.Two rotational components of Taft,Tabas and San-Fernando earthquakes are evaluated based on the translational components of the earthquakes and considering frequency dependencies of incident angle and wave velocity.Finally,dynamic analyses of Morrow Point Dam are presented to evaluate the effects of combined translational and rotational components on the seismic response of the dam.Various conditions of reservoirs,including full and empty state,are considered in the analyses.Fluid–structure interaction was completely taken into account.It was realized that incorporating rotational components increased the maximum compressive and tensile stresses in both empty and full reservoir analyses.Distribution of maximum tensile stresses is very sensitive to the rotational components of the earthquake.Also,it can be concluded that the segregated effect of the rocking component on the response of concrete dams is more effective than the sole effect of the torsional component.展开更多
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a...In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.展开更多
Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294...Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.展开更多
Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that co...Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention...It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.展开更多
The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a...The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited.展开更多
The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the...The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.展开更多
Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation n...Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.展开更多
This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete ...This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.展开更多
This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.La...This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.展开更多
传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序...传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。展开更多
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.
基金National Natural Science Foundation of China Under Grant No.50139010
文摘Based on research studies currently being carried out at Dalian University of Technology, some important aspects for the earthquake safety assessmcnt of concrete dams are reviewed and discussed. First, the rate-dependent behavior of concrcte subjected to earthquake loading is examined, emphasizing the properties of concrete under cyclic and biaxial loading conditions. Second, a modified four-parameter Hsieh-Ting-Chen viscoplastic consistency model is developed to simulate the rate-dependent behavior of concrete. The earthquake response of a 278m high arch dam is analyzed, and the results show that the strain-rate effects become noticeable in the inelastic range, Third, a more accurate non-smooth Newton algorithm for the solution of three-dimensional frictional contact problems is developed to study the joint opening effects of arch dams during strong earthquakes. Such effects on two nearly 300m high arch dams have been studied. It was found that the canyon shape has great influence on the magnitude and distribution of the joint opening along the dam axis. Fourth, the scaled boundary finite element method presented by Song and Wolf is employed to study the dam-reservoir-foundation interaction effects of concrete dams. Particular emphases were placed on the variation of foundation stiffness and the anisotropic behavior of the foundation material on the dynamic response of concrete dams. Finally, nonlinear modeling of concrete to study the damage evolution of concrete dams during strong earthquakes is discussed. An elastic-damage mechanics approach for damage prediction of concrete gravity dams is described as an example. These findings are helpful in understanding the dynamic behavior of concrete dams and promoting the improvement of seismic safety assessment methods.
文摘The present study deals with dynamic analysis of arch concrete dams,taking rotational components of earthquakes into account.A modified methodology was used to evaluate the rotational components of the earthquake.The translational components of the earthquake have been used in to obtain the rotational components of the earthquake,based on the intersecting isotropic elastic wave propagation.Two rotational components of Taft,Tabas and San-Fernando earthquakes are evaluated based on the translational components of the earthquakes and considering frequency dependencies of incident angle and wave velocity.Finally,dynamic analyses of Morrow Point Dam are presented to evaluate the effects of combined translational and rotational components on the seismic response of the dam.Various conditions of reservoirs,including full and empty state,are considered in the analyses.Fluid–structure interaction was completely taken into account.It was realized that incorporating rotational components increased the maximum compressive and tensile stresses in both empty and full reservoir analyses.Distribution of maximum tensile stresses is very sensitive to the rotational components of the earthquake.Also,it can be concluded that the segregated effect of the rocking component on the response of concrete dams is more effective than the sole effect of the torsional component.
文摘In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived.
文摘Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.
基金Naitonal Natural Science Foundation of China Under Grant No.90815026Foundation of National Seismic Bureau Under Grant No.200808074
文摘Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.
基金Supported by the National Natural Science Foundation of China(No.50909078)the National Basic Research Program of China("973"Program,No.2013CB035900)
文摘It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.
文摘The effects ofincoherency and wave-passage on the nonlinear responses of concrete arch dams are investigated in this study. A double curvature arch dam is selected as a numerical example. The reservoir is modeled as a compressible material and the foundation is modeled as a massless medium. Ground motion time-histories are artificially generated using the Monte Carlo simulation approach. Four different finite element models (FEM) are considered: uniform excitation; incoherence effect; wave passage effect; and both incoherence and wave passage effects. It was revealed that modeling multiple-supports excitation could have a significant impact on the structural response of the dam by inducing a pseudo-static effect. Also, it was concluded that the coherency effect overshadows the wave passage effect and the results obtained from non-uniform excitation of FEM, including the wave passage effect, is close to the results of the FEM when it is uniformly excited.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50179002,50709013)Liaoning Province Dr. Fund(Grant No.20071025)
文摘The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.
基金supported by the National Natural Science Foundation of China(Grant Nos.51579086,51479054,51379068&51139001)Jiangsu Natural Science Foundation(Grant No.BK20140039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.YS11001)
文摘Considering the complex nonlinear relationship between the material parameters of a concrete faced rock-fill dam(CFRD) and its displacements, the harmony search(HS) algorithm is used to optimize the back propagation neural network(BPNN), and the HS-BPNN algorithm is formed and applied for the inversion analysis of the parameters of rock-fill materials. The sensitivity of the parameters in the Duncan and Chang's E-B model is analyzed using the orthogonal test design. The case study shows that the parameters φ0, K, Rf, and Kb are sensitive to the deformation of the rock-fill dam and the inversion analysis for these parameters is performed by the HS-BPNN algorithm. Compared with the traditional BPNN, the HS-BPNN algorithm exhibits the advantages of high convergence precision, fast convergence rate, and strong stability.
文摘This paper summarizes the main technical points related to 100 m-height-scale concrete faced rock-fill dams and analyzes the main problems and their causes occurring during construction of 200 m-height-scale concrete faced rock-fill dams. This paper has raised the key technical problems which need to study for construction of 300 m-height-scale concrete faced rock-fill dams based on the main experiences on the extra-high concrete faced rock-fill dams built after the year of 2000.
文摘This paper demonstrates the difficulties in determining the relevant material parameters for a valuation of the deformation behavior of the up-and downstream dam shell by means of an embankment dam of medium height.Laboratory as well as field tests on solid rock-fill material were performed before the beginning of construction.During the construction the properties of the available rock-fill changed from solid to soft materials.This gave rise to the necessity of adjusting the dam design of the downstream dam shoulder.Several times higher dam settlements as well as significant differential settlements between the up-and downstream dam shell were observed during construction and operation.Apart from this situation,the dam has been operated for nearly 20 years and the behavior of the water barrier has been very good.
文摘传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。