Multiple-rock magnetic investigations conducted on the loess-paleosol sequences at Kurtak in Southwestern Siberia reveal that the mass-normalized low-field magnetic susceptibility profiles reflect changes in lithology...Multiple-rock magnetic investigations conducted on the loess-paleosol sequences at Kurtak in Southwestern Siberia reveal that the mass-normalized low-field magnetic susceptibility profiles reflect changes in lithology between relatively unweathered primary loess of glacial periods and the interglacial paleosols. Maxima in susceptibility values correspond with the least-weathered loess horizons, and minima with the humic horizons of soils. Frequency-dependent susceptibility of the loess-paleosol sequences at Kurtak is very low and practically uniform, indicating the dominance of non-SP ferrimagnetic minerals and negligible pedogenesis. The history of temperature-dependence of susceptibility (IDS) and stepwise acquisition of the isothermal remanent magnetization (SIRM) have confirmed that magnetite is predominant magnetic mineral, and only few maghemite and probably hematite are present within the studied section. Anisotropy of the magnetic susceptibility (AMS) can be used to monitor tilt and展开更多
Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyr...Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively. Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→ pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.展开更多
文摘Multiple-rock magnetic investigations conducted on the loess-paleosol sequences at Kurtak in Southwestern Siberia reveal that the mass-normalized low-field magnetic susceptibility profiles reflect changes in lithology between relatively unweathered primary loess of glacial periods and the interglacial paleosols. Maxima in susceptibility values correspond with the least-weathered loess horizons, and minima with the humic horizons of soils. Frequency-dependent susceptibility of the loess-paleosol sequences at Kurtak is very low and practically uniform, indicating the dominance of non-SP ferrimagnetic minerals and negligible pedogenesis. The history of temperature-dependence of susceptibility (IDS) and stepwise acquisition of the isothermal remanent magnetization (SIRM) have confirmed that magnetite is predominant magnetic mineral, and only few maghemite and probably hematite are present within the studied section. Anisotropy of the magnetic susceptibility (AMS) can be used to monitor tilt and
基金the National Science Foundation of China (Grant Nos.40221402,40325011,40634024) the Chinese Academy of Sciences Project (Grant No.KZCX3-SW-150)
文摘Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively. Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→ pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.