It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservat...It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservation and restoration of historical monuments.This study focuses on measuring the thermal conductivity using the thermal conductivity scanning(TCS)technique and measuring the P-wave ve-locity using portable equipment.This was applied for some dry and saturated calcarenite samples in the horizontal and vertical directions(parallel and perpendicular to the bedding plane,respectively).The calcarenites were selected from some historical monuments in Morocco.These physical properties were measured in the laboratory to find a reliable relationship between all of these properties.As a result of the statistical analysis of the obtained data,excellent linear relationships were observed between the porosity and both the thermal conductivity and porosity.These relationships are characterized by relatively high coefficients of determination for the horizontal and vertical samples.Based on the thermal conductivity and P-wave velocity values in these two directions,the anisotropy coefficients of these two properties were calculated.The internal structure and the pore fabric of the calcarenite samples were delineated using scanning electron microscopy(SEM),while their chemical and mineral compositions were studied using the energy dispersive X-ray analysis(EDXA)and X-ray diffraction(XRD)techniques.展开更多
A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other au...A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors. The heat transfer coefficient was determined by inverse analysis using the temperature measurements. From experimental results, it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity, a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given.展开更多
This study investigates a strong magnetic field acting over an elastic rotator semiconductor medium.The Thomson effect due to the magnetic field during the photothermal transport process is studied,and the thermoelect...This study investigates a strong magnetic field acting over an elastic rotator semiconductor medium.The Thomson effect due to the magnetic field during the photothermal transport process is studied,and the thermoelectricity theory is used to explain the behavior of waves in the homogenous and isotropic medium under the effect of variable thermal conductivity.The variable thermal conductivity is considered as a linear function of the temperature.The two-dimensional deformation equations are used to describe the overlaps among plasma,electrical,thermal,and magneto-elastic waves.The charge density of inertia-particles is considered as a function of time for studying the induced electric current.The normal mode analysis is used to obtain the exact solutions of the physical field distributions as part of this phenomenon.To obtain the complete solutions of the physical field quantities,the certain mechanical loads,electromagnetic effects,thermal effects,and plasma recombination process are applied herein.The results of the physical distributions are graphically depicted and discussed in consideration of the internal heat source,rotation,and Peltier coefficient.展开更多
An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental r...An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental results on the temperature dependence of the phonon diffusion coefficient in nanoceramics and dielectric glasses which showed a similar anomalous behavior of the diffusion coefficient in these systems that may be described under the assumption of a gap in the phonon spectrum. In this paper, the role of the gap in low-temperature behavior of the thermal conductivity, ~'(T), is analyzed. The plateau in the temperature dependence of the thermal conductivity is shown to correlate with the position and the width of the gap. The temperature dependence of thermal conductivity of such systems when changing the scat- tering parameters related to various mechanisms is studied. It is found that the umklapp process (U-processes) involving low-frequency short-wavelength phonons below the gap forms the behavior of the temperature dependence of thermal con- ductivity in the plateau region. A comparison of the calculated and experimental results shows considerable possibilities of the model in describing the low-temperature thermal conductivity in glass-like systems.展开更多
The temperature-dependent absorption coefficient and thermal conductivity of a quartz window are obtained through experimental tests at a wide range of temperatures.A Fourier transform infrared spectrometer with a hea...The temperature-dependent absorption coefficient and thermal conductivity of a quartz window are obtained through experimental tests at a wide range of temperatures.A Fourier transform infrared spectrometer with a heated cavity is used for performing the transmittance measurements.The spectral absorption coefficient of the quartz window is inverted by the transmittance information at different temperatures using a genetic algorithm.Then,a quartz window-graphite plate-quartz window multilayer structure is designed,and the transient response of the structure subjected to high-temperature heating is recorded by a self-designed setup.Cooperating with the above absorption coefficient,a non-gray radiative-conductive heat transfer model is built for the multilayer structure,and the intrinsic thermal conductivity of the quartz window is identified.Finally,the effects of the temperature-dependent absorption coefficient and spectral selective features of the medium on the heat transfer characteristics are discussed.The results show that the absorption coefficient gradually increases with temperature.The intrinsic thermal conductivity of the quartz window varies from 1.35 to 2.52 W/(m·K)as the temperature rises,while the effective thermal conductivity is higher than the intrinsic thermal conductivity due to thermal radiation,specifically 26.4%higher at 1100 K.In addition,it is found that the influence of the temperature-dependent absorption coefficient on temperature of unheated side shows a trend of first increasing and then decreasing.When the absorption coefficient varies greatly with wavelength,a non-gray radiative-conductive heat transfer model should be built for the semitransparent materials.展开更多
In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread lit...In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.展开更多
This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,...This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.展开更多
In order to discover the relation between rock-soil thermal properties and strata during the process of engineering investigation,the authors studied the measuring principle of Thermal Conductivity Scanner( TCS)and me...In order to discover the relation between rock-soil thermal properties and strata during the process of engineering investigation,the authors studied the measuring principle of Thermal Conductivity Scanner( TCS)and measured the thermal properties of 45 drilling samples from Qinghai with TCS in the laboratory. The results show that the specific heat capacity( SHC) decreases while the thermal conductivity( TC) increases with the increase of the depth. With the lithological change,the specific heat capacity and thermal conductivity have the opposite trend. The depth and lithology have a greater influence on the thermal conductivity than the specific heat capacity.展开更多
Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristi...Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.展开更多
Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity a...Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.展开更多
Low thermal conductivity,compatible thermal expansion coefficient,and good calcium–magnesium–aluminosilicate(CMAS)corrosion resistance are critical requirements of environmental barrier coatings for silicon-based ce...Low thermal conductivity,compatible thermal expansion coefficient,and good calcium–magnesium–aluminosilicate(CMAS)corrosion resistance are critical requirements of environmental barrier coatings for silicon-based ceramics.Rare earth silicates have been recognized as one of the most promising environmental barrier coating candidates for good water vapor corrosion resistance.However,the relatively high thermal conductivity and high thermal expansion coefficient limit the practical application.Inspired by the high entropy effect,a novel rare earth monosilicate solid solution(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)was designed to improve the overall performance.The as-synthesized(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)shows very low thermal conductivity(1.07 W·m-1·K-1 at 600℃).Point defects including mass mismatch and oxygen vacancies mainly contribute to the good thermal insulation properties.The thermal expansion coefficient of(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)can be decreased to(4.0–5.9)×10^(-6)K^(-1)due to severe lattice distortion and chemical bonding variation,which matches well with that of SiC((4.5–5.5)×10^(-6)K^(-1)).In addition,(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)presents good resistance to CMAS corrosion.The improved performance of(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)highlights it as a promising environmental barrier coating candidate.展开更多
As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However...As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However,the pseudobrookite is unstable and prone to decomposing below 1200℃,which limits the practical application of the pseudobrookite.In this paper,the high-entropy pseudobrookite ceramic is synthesized for the first time.The pure high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) with the pseudobrookite structure and the biphasic high-entropy ceramic composed of the highentropy pseudobrookite(Cr,Mn,Fe,Al,Ga)_(2)TiO_(5) and the high-entropy spinel(Cr,Mn,Fe,Al,Ga,Ti)_(3)O_(4) are successfully prepared by the in-situ solid-phase reaction method.The comparison between the theoretical crystal structure of the pseudobrookite and the aberration-corrected scanning transmission electron microscopy(AC-STEM)images of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) shows that the metal ions(M and Ti ions)are disorderly distributed at the A site and the B site in high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5),leading to an unprecedentedly high configurational entropy of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5).The bulk high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) ceramics exhibit a low thermal expansion coefficient of 6.35×10^(−6) K^(−1) in the temperature range of 25-1400℃ and thermal conductivity of 1.840 W·m^(−1)·K^(−1) at room temperature,as well as the excellent thermal stability at 200,600,and 1400℃.Owing to these outstanding properties,high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) is expected to be the promising candidate for high-temperature thermal insulation.This work has further extended the family of different crystal structures of high-entropy ceramics reported to date.展开更多
文摘It is essential to study the porosity,thermal conductivity,and P-wave velocity of calcarenites,as well as the anisotropy coefficients of the thermal conductivity and P-wave velocity,for civil engineering,and conservation and restoration of historical monuments.This study focuses on measuring the thermal conductivity using the thermal conductivity scanning(TCS)technique and measuring the P-wave ve-locity using portable equipment.This was applied for some dry and saturated calcarenite samples in the horizontal and vertical directions(parallel and perpendicular to the bedding plane,respectively).The calcarenites were selected from some historical monuments in Morocco.These physical properties were measured in the laboratory to find a reliable relationship between all of these properties.As a result of the statistical analysis of the obtained data,excellent linear relationships were observed between the porosity and both the thermal conductivity and porosity.These relationships are characterized by relatively high coefficients of determination for the horizontal and vertical samples.Based on the thermal conductivity and P-wave velocity values in these two directions,the anisotropy coefficients of these two properties were calculated.The internal structure and the pore fabric of the calcarenite samples were delineated using scanning electron microscopy(SEM),while their chemical and mineral compositions were studied using the energy dispersive X-ray analysis(EDXA)and X-ray diffraction(XRD)techniques.
基金Funded by the National Natural Science Foundation of China (Nos. 50779010, 50539010)
文摘A very simple model for predicting thermal conductivity based on its definiensis was presented. The thermal conductivity obtained using the model provided a good coincidence to the investigations performed by other authors. The heat transfer coefficient was determined by inverse analysis using the temperature measurements. From experimental results, it is noted that heat transfer coefficient increases with the increase of wind velocity and relative humidity, a prediction equation on heat transfer coefficient about wind velocity and relative humidity is given.
文摘This study investigates a strong magnetic field acting over an elastic rotator semiconductor medium.The Thomson effect due to the magnetic field during the photothermal transport process is studied,and the thermoelectricity theory is used to explain the behavior of waves in the homogenous and isotropic medium under the effect of variable thermal conductivity.The variable thermal conductivity is considered as a linear function of the temperature.The two-dimensional deformation equations are used to describe the overlaps among plasma,electrical,thermal,and magneto-elastic waves.The charge density of inertia-particles is considered as a function of time for studying the induced electric current.The normal mode analysis is used to obtain the exact solutions of the physical field distributions as part of this phenomenon.To obtain the complete solutions of the physical field quantities,the certain mechanical loads,electromagnetic effects,thermal effects,and plasma recombination process are applied herein.The results of the physical distributions are graphically depicted and discussed in consideration of the internal heat source,rotation,and Peltier coefficient.
基金Project supported by the Ural Branch of the Russian Academy of Sciences,Russia(Grant No.18-2-2-12)the Russian Foundation for Basic Research,Russia(Grant Nos.16-07-00529 and 18-07-00191)the Financing Program,Russia(Grant No.AAAA-A16-116021010082-8)
文摘An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values (a gap) in the phonon spectrum is proposed. The model is based on new experimental results on the temperature dependence of the phonon diffusion coefficient in nanoceramics and dielectric glasses which showed a similar anomalous behavior of the diffusion coefficient in these systems that may be described under the assumption of a gap in the phonon spectrum. In this paper, the role of the gap in low-temperature behavior of the thermal conductivity, ~'(T), is analyzed. The plateau in the temperature dependence of the thermal conductivity is shown to correlate with the position and the width of the gap. The temperature dependence of thermal conductivity of such systems when changing the scat- tering parameters related to various mechanisms is studied. It is found that the umklapp process (U-processes) involving low-frequency short-wavelength phonons below the gap forms the behavior of the temperature dependence of thermal con- ductivity in the plateau region. A comparison of the calculated and experimental results shows considerable possibilities of the model in describing the low-temperature thermal conductivity in glass-like systems.
基金supported by the National Natural Science Foundation of China(No.51806046)the China Postdoctoral Science Foundation(2020T130145)。
文摘The temperature-dependent absorption coefficient and thermal conductivity of a quartz window are obtained through experimental tests at a wide range of temperatures.A Fourier transform infrared spectrometer with a heated cavity is used for performing the transmittance measurements.The spectral absorption coefficient of the quartz window is inverted by the transmittance information at different temperatures using a genetic algorithm.Then,a quartz window-graphite plate-quartz window multilayer structure is designed,and the transient response of the structure subjected to high-temperature heating is recorded by a self-designed setup.Cooperating with the above absorption coefficient,a non-gray radiative-conductive heat transfer model is built for the multilayer structure,and the intrinsic thermal conductivity of the quartz window is identified.Finally,the effects of the temperature-dependent absorption coefficient and spectral selective features of the medium on the heat transfer characteristics are discussed.The results show that the absorption coefficient gradually increases with temperature.The intrinsic thermal conductivity of the quartz window varies from 1.35 to 2.52 W/(m·K)as the temperature rises,while the effective thermal conductivity is higher than the intrinsic thermal conductivity due to thermal radiation,specifically 26.4%higher at 1100 K.In addition,it is found that the influence of the temperature-dependent absorption coefficient on temperature of unheated side shows a trend of first increasing and then decreasing.When the absorption coefficient varies greatly with wavelength,a non-gray radiative-conductive heat transfer model should be built for the semitransparent materials.
文摘In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.
基金Centre for Energy and Electric Power (CEEP), Tshwane University of Technology, Pretoria, NRF and DHET for providing financial aid to this project
文摘This study aimed at improving the tribological and thermal properties of Al alloy using CNTs and Nb nanopowder as reinforcements and spark plasma sintering(SPS)as the fabrication method.The SPS was conducted at 630℃,30 MPa,10 min,and 200℃/min.The tribology test was run with ball-on-disc tribometer using steel ball as the counter body.And the thermal test was processed with thermogravimetric analyzer(TGA)and laser flash apparatus(LFA).Results showed that the addition of 8 wt.%CNTs and 8 wt.%Nb reinforcements respectively decreased the coefficient of friction(COF)of the composite by 79%.The wear volume of the composite was decreased by 23%,and so was the wear rate.However,the thermal conductivity of the composite was equally improved by 44%.The tribology improvement was stimulated by a C film generated by CNTs and a protective Nb2O5 formed by Nb nanopowder.The thermal conductivity was improved by the grain refining property of Nb and the high thermal conductivity of CNTs.Therefore,these results indicated that Al-CNTs-Nb composite is a robust material for high transmission conductor capable of reducing sag and ensuring the durability of the composite.
基金Supported by National High Technology Research and Development Program of China(863 Project)(No.2012AA052801)National Natural ScienceFoundation of China(No.41372239)Specialized Research Fund for the Doctoral Program of Higher Education(No.20110061110055)
文摘In order to discover the relation between rock-soil thermal properties and strata during the process of engineering investigation,the authors studied the measuring principle of Thermal Conductivity Scanner( TCS)and measured the thermal properties of 45 drilling samples from Qinghai with TCS in the laboratory. The results show that the specific heat capacity( SHC) decreases while the thermal conductivity( TC) increases with the increase of the depth. With the lithological change,the specific heat capacity and thermal conductivity have the opposite trend. The depth and lithology have a greater influence on the thermal conductivity than the specific heat capacity.
文摘Thermoelectric materials have been a competent source for the production of energy in the present decade.The most important and potential parameter required for the material to have better thermoelectric characteristics is the Seebeck coefficient.In this work,ultra high molecular weight polyethylene(UHMWPE)and graphene oxide(GO)nanocomposites were prepared by mechanical mixing by containing 10000ppm,50000ppm,70000ppm,100000ppm,150000ppm,and 200000ppm loadings of graphene oxide.Due to the intrinsic insulating nature of UHMWPE,the value of Seebeck for pristine UHMWPE and its nanocomposites with 10000ppm&50000ppm of GO concentration was too low to be detected.However,the Seebeck coefficient for composites with 70000ppm,100000ppm,150000ppm,and 200000ppm loadings of GO was found to be 180,206,230,and 235μV/K,respectively.These higher values of Seebeck coefficients were attributed to the superior thermal insulating nature of UHMWPE and the conductive network induced by the GO within the UHMWPE insulating matrix.Although,the values of the figure of merit and power factor were negligibly small due to the lower concentration of charge carriers in UHMWPE/GO nanocomposites but still reported,results are extremely hopeful for considering the composite as the potential candidate for thermoelectric applications.
基金the support provided by A*STAR and the Industry Alignment Fund through the Pharos “Hybrid thermoelectric materials for ambient applications” Program (No.1527200021)。
文摘Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.
基金This work was financially supported by Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholars(Grant No.2021B1515020083)Guang Dong Basic and Applied Basic Research Foundation for Young Scholars(Grant No.21201910240002803)+1 种基金Shenzhen Science and Technology Program(Grant Nos.GXWD20201231165807008,20200831172254001)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.2021qntd10).
文摘Low thermal conductivity,compatible thermal expansion coefficient,and good calcium–magnesium–aluminosilicate(CMAS)corrosion resistance are critical requirements of environmental barrier coatings for silicon-based ceramics.Rare earth silicates have been recognized as one of the most promising environmental barrier coating candidates for good water vapor corrosion resistance.However,the relatively high thermal conductivity and high thermal expansion coefficient limit the practical application.Inspired by the high entropy effect,a novel rare earth monosilicate solid solution(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)was designed to improve the overall performance.The as-synthesized(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)shows very low thermal conductivity(1.07 W·m-1·K-1 at 600℃).Point defects including mass mismatch and oxygen vacancies mainly contribute to the good thermal insulation properties.The thermal expansion coefficient of(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)can be decreased to(4.0–5.9)×10^(-6)K^(-1)due to severe lattice distortion and chemical bonding variation,which matches well with that of SiC((4.5–5.5)×10^(-6)K^(-1)).In addition,(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)presents good resistance to CMAS corrosion.The improved performance of(Ho_(0.25)Lu_(0.25)Yb_(0.25)Eu_(0.25))_(2)SiO_(5)highlights it as a promising environmental barrier coating candidate.
基金the National Natural Science Foundation of China(No.52172072).
文摘As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However,the pseudobrookite is unstable and prone to decomposing below 1200℃,which limits the practical application of the pseudobrookite.In this paper,the high-entropy pseudobrookite ceramic is synthesized for the first time.The pure high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) with the pseudobrookite structure and the biphasic high-entropy ceramic composed of the highentropy pseudobrookite(Cr,Mn,Fe,Al,Ga)_(2)TiO_(5) and the high-entropy spinel(Cr,Mn,Fe,Al,Ga,Ti)_(3)O_(4) are successfully prepared by the in-situ solid-phase reaction method.The comparison between the theoretical crystal structure of the pseudobrookite and the aberration-corrected scanning transmission electron microscopy(AC-STEM)images of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) shows that the metal ions(M and Ti ions)are disorderly distributed at the A site and the B site in high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5),leading to an unprecedentedly high configurational entropy of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5).The bulk high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) ceramics exhibit a low thermal expansion coefficient of 6.35×10^(−6) K^(−1) in the temperature range of 25-1400℃ and thermal conductivity of 1.840 W·m^(−1)·K^(−1) at room temperature,as well as the excellent thermal stability at 200,600,and 1400℃.Owing to these outstanding properties,high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) is expected to be the promising candidate for high-temperature thermal insulation.This work has further extended the family of different crystal structures of high-entropy ceramics reported to date.