One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- ric...This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- rica, an intelligent microseismicity monitoring system and sensors, an understanding of the rockburst evolution process using laboratory and in situ tests and monitoring, the establishment of a quantitative warning method for the location and intensities of different types of rockburst, and the development of measures for the dynamic control of rockburst. The mitigation of rockburst at the Hongtoushan copper mine is presented as an illustrative example.展开更多
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (51621006, 413200104005, and 11232014).
文摘This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- rica, an intelligent microseismicity monitoring system and sensors, an understanding of the rockburst evolution process using laboratory and in situ tests and monitoring, the establishment of a quantitative warning method for the location and intensities of different types of rockburst, and the development of measures for the dynamic control of rockburst. The mitigation of rockburst at the Hongtoushan copper mine is presented as an illustrative example.