After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performanc...After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performance and explosion-proof capability. For this type of environment,we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels.The composition and operational principles of the mobile platform are introduced,we discuss the flameproof design of the rocker assembly,as well as the operational principles and mechanical structure of the bevel gear differential and the main parameters are provided.Motion simulation of the differential function and condition of the robot running on virtual,uneven terrain is carried out with ADAMS.The simulation results show that the differential device can maintain the main body of the robot at an average angle between two rockers.The robot model has good operating performance.Experiments on terrain adaptability and surmounting obstacle performance of the robot prototype have been carried out.The results indicate that the prototype has good terrain adaptability and strong obstacle-surmounting performance.展开更多
基金the National Hi-tech Research and Development Program of China for its financial support(No.2006AA04Z208).
文摘After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performance and explosion-proof capability. For this type of environment,we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels.The composition and operational principles of the mobile platform are introduced,we discuss the flameproof design of the rocker assembly,as well as the operational principles and mechanical structure of the bevel gear differential and the main parameters are provided.Motion simulation of the differential function and condition of the robot running on virtual,uneven terrain is carried out with ADAMS.The simulation results show that the differential device can maintain the main body of the robot at an average angle between two rockers.The robot model has good operating performance.Experiments on terrain adaptability and surmounting obstacle performance of the robot prototype have been carried out.The results indicate that the prototype has good terrain adaptability and strong obstacle-surmounting performance.