期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Seismic evaluation of rocking structures through performance assessment and fragility analysis 被引量:4
1
作者 Mohammad G. Vetr Abolfazl Riahi Nouri Afshin Kalantari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期115-127,共13页
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-his... Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response. 展开更多
关键词 rocking structures conventional structures seismic performance fragility curves
下载PDF
Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression 被引量:5
2
作者 Hongjian Lu Yiren Wang +2 位作者 Deqing Gan Jie Wu Xiaojun Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期802-812,共11页
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ... To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS. 展开更多
关键词 backfill–rock composite structure triaxial compression mechanical behavior acoustic emission numerical simulation
下载PDF
A novel box-counting method for quantitative fractal analysis of threedimensional pore characteristics in sandstone
3
作者 Huiqing Liu Heping Xie +2 位作者 Fei Wu Cunbao Li Renbo Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期479-489,共11页
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi... Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks. 展开更多
关键词 3D fractal analysis Fractal dimension Rock pore structure Box-counting method Permeability simulation Computational geosciences
下载PDF
Failure evaluation and control factor analysis of slope block instability along traffic corridor in Southeastern Tibet
4
作者 LIU Changqing BAO Han +3 位作者 LAN Hengxing YAN Changgen LI Changbo LIU Shijie 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1830-1848,共19页
The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock m... The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks. 展开更多
关键词 Slope engineering Block instability Rapid evaluation method Rock mass structure Control factor
下载PDF
Testing method of rock structural plane using digital drilling
5
作者 Qi Wang Yuncai Wang +4 位作者 Bei Jiang Hongke Gao Fenglin Ma Dahu Zhai Songlin Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2563-2578,共16页
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua... The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering. 展开更多
关键词 Structural planes in the rock mass Digital drilling Drilling parameters Equivalent compressive strength Testing method
下载PDF
Deep learning based classification of rock structure of tunnel face 被引量:23
6
作者 Jiayao Chen Tongjun Yang +2 位作者 Dongming Zhang Hongwei Huang Yu Tian 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期395-404,共10页
The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a resul... The automated interpretation of rock structure can improve the efficiency,accuracy,and consistency of the geological risk assessment of tunnel face.Because of the high uncertainties in the geological images as a result of different regional rock types,as well as in-situ conditions(e.g.,temperature,humidity,and construction procedure),previous automated methods have limited performance in classification of rock structure of tunnel face during construction.This paper presents a framework for classifying multiple rock structures based on the geological images of tunnel face using convolutional neural networks(CNN),namely Inception-ResNet-V2(IRV2).A prototype recognition system is implemented to classify 5 types of rock structures including mosaic,granular,layered,block,and fragmentation structures.The proposed IRV2 network is trained by over 35,000 out of 42,400 images extracted from over 150 sections of tunnel faces and tested by the remaining 7400 images.Furthermore,different hyperparameters of the CNN model are introduced to optimize the most efficient algorithm parameter.Among all the discussed models,i.e.,ResNet-50,ResNet-101,and Inception-v4,Inception-ResNet-V2 exhibits the best performance in terms of various indicators,such as precision,recall,F-score,and testing time per image.Meanwhile,the model trained by a large database can obtain the object features more comprehensively,leading to higher accuracy.Compared with the original image classification method,the sub-image method is closer to the reality considering both the accuracy and the perspective of error divergence.The experimental results reveal that the proposed method is optimal and efficient for automated classification of rock structure using the geological images of the tunnel face. 展开更多
关键词 Convolutional neural network Inception-ResNet-V2 Rock structure Image classification
下载PDF
Rock Damage Structure of the South Longmen-Shan Fault in the 2008 M8 Wenchuan Earthquake Viewed with Fault-Zone Trapped Waves and Scientific Drilling 被引量:9
7
作者 LI Yonggang XU Zhiqin LI Haibing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第2期444-467,共24页
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I... This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect. 展开更多
关键词 Rupture zone rock damage structure scientific drilling fault-zone trapped waves Wenchuan Earthquake Longmen-Shan Fault
下载PDF
The cooling effect of crushed rock structures on permafrost under an embankment 被引量:5
8
作者 QingBai Wu MingYong Li YongZhi Liu 《Research in Cold and Arid Regions》 2009年第1期39-50,共12页
Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide ... Based on the analysis and comparison of soil temperature, thermal regime and permafrost table under the experimental embankment of crushed rock structures in Beiluhe, results show that crushed rock structures provide an extensive cooling effect, which produces a rising permafrost table and decreasing soil temperatures. The rise of the permafrost table under the embankment ranges from an increase of 1.08 m to 1.67 m, with an average of 1.27 m from 2004 to 2007. Mean annual soil temperatures under the crushed rock layer embankment decreased significantly from 2005 to 2007, with average decreases of ?1.03 °C at the depth of 0.5 m, ?1.14 °C at the depth of 1.5 m, and ?0.5 °C at the depth of 5 m. During this period, mean annual soil temperatures under the crushed rock cover embankment showed a slight decrease at shallow depths, with an average decrease of ?0.2 °C at the depth of 0.5 m and 1.5 m, but a slight rise at the depth of 5 m. After the crushed rock structures were closed or crammed with sand, the cooling effect of the crushed rock layer embankment was greatly reduced and that of the crushed rock cover embankment was just slightly reduced. 展开更多
关键词 cooling effect crushed rock structure PERMAFROST
下载PDF
Comparison of the Pore Structure of Ultralow-Permeability Reservoirs Between the East and West Subsags of the Lishui Sag Using Constant-Rate Mercury Injection 被引量:2
9
作者 WANG Jinkai ZHANG Jinliang +1 位作者 SHEN Wenlong LIU Hengyi 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第2期315-328,共14页
In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constan... In this study, the differences in reservoir parameters, such as pore radius, throat radius, and pore-throat ratio, between the east and west subsags of the Lishui Sag are analyzed by using data obtained from a constant-rate mercury injection experiment. Furthermore, the quality of the reservoirs in the two subsags is systematically evaluated. Results show that the throat radius of the Lishui west subsag is larger than that of the east subsag, and this parameter has a positive correlation with reservoir quality. However, the pore-throat ratio of the east subsag is larger than that of the west subsag, which has an inverse relationship with reservoir quality. The main reasons for this reservoir difference can be attributed to sedimentation and diagenesis. The sedimentary facies types of the Lishui east subsag are the fan delta, shore lake, shallow lake, and shore shallow lake;their sandstone composition maturity is low;the clay mineral content is high;and the rock has undergone strong diagenesis. Therefore, the physical conditions of the reservoir are poor. However, the sandstones in the Lishui west subsag have weak cementation and compaction, mainly with an intergranular pore structure type, which leads to good connectivity between pores. Therefore, the storage performance and seepage capacity of the Lishui west subsag are better than those of the east subsag;the west subsag is the main area of oil and gas accumulation, as confirmed in the process of exploration and development. 展开更多
关键词 Lishui Sag constant-rate mercury injection sedimentary facies DIAGENESIS rock pore structure
下载PDF
Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area,China 被引量:1
10
作者 WEI Xiang GUO Ying +4 位作者 CHENG Hanlie WEI Jianfei ZHANG Linlin HUO Liang HOU Zhenkun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1381-1392,共12页
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,... The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal. 展开更多
关键词 fracture geometry parameters rock mass structure high-level radioactive waste disposal RMSR Beishan area
下载PDF
Suggestions, Methods and Examples of Monitoring of Rock Structures and Excavation of Rock Mass
11
作者 Evandro Moraes da Gama 《Geomaterials》 2020年第4期91-104,共14页
Rock mechanics projects, excavations and rock mass monitoring are day-by-day concerns of professionals and scientists of rock engineer. Technological advances observed in the 20 and 21 centuries provided high precisio... Rock mechanics projects, excavations and rock mass monitoring are day-by-day concerns of professionals and scientists of rock engineer. Technological advances observed in the 20 and 21 centuries provided high precision equipment capable of establishing deformation and estimating the rock mass stress remotely and in real time. In addition, in order to confirm and study the data obtained with theses equipment, numerical programs of modeling became more accessible to schools, research centers and private companies. Monitoring an excavation requires, besides understanding fully the rock structure, precise definitions and goals: why, how, where. This article discusses concepts of monitoring, modeling and calibration, as well as presents examples of applications where these questions were successfully answered. 展开更多
关键词 MONITORING Monitored Excavations Calibrated Model Rock structure Rock Mass
下载PDF
Multiscale evolution mechanism of sandstone under wet-dry cycles of deionized water:From molecular scale to macroscopic scale 被引量:3
12
作者 Jie Meng Changdong Li +5 位作者 Jia-Qing Zhou Zihan Zhang Shengyi Yan Yahui Zhang Dewei Huang Guihua Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1171-1185,共15页
Water is the most abundant molecule found on the earth’s surface and is a key factor in multiscale rock destruction.However,given the fine-grained nature of rock and the complexity of its internal structure,the micro... Water is the most abundant molecule found on the earth’s surface and is a key factor in multiscale rock destruction.However,given the fine-grained nature of rock and the complexity of its internal structure,the microstructural evolution of rock under the action of water has not yet been elucidated in detail,and little is understood about the relationship between the rock structure and solideliquid unit.A variety of techniques were used in this study to track the mechanical properties,pore and crack characteristics,and mineral structure degradation characteristics of sandstone at different stages under the action of deionized water,and the evolution mechanisms of the microstructure were analyzed at the molecular scale.The results showed that during the watererock interaction process,water was adsorbed onto the surface of dolomite minerals and the hydrophilic surface of clay minerals,forming a high-density hydrogen bond network.However,different mineral surface structures had different water adsorption structures,resulting in the strain of the dense clay mineral aggregates under expansion action.Stress concentrated at crack tips under the capillary force of dolomite minerals(very weak dolomite dissolution).These effects resulted in a substantial increase in the number of small pores and enhancements in poreecrack connectivity,and the rock strength exhibited varying degrees of decline at different stages of wet-dry cycles.In general,the results of this paper will help to further elucidate the internal connections between molecular-scale and macroscale processes in rock science. 展开更多
关键词 Rock structure Watererock interaction Multiscale evolution Adsorption structure Hydrogen bond
下载PDF
Structural plane recognition from three-dimensional laser scanning points using an improved region-growing algorithm based on the robust randomized Hough transform 被引量:1
13
作者 XU Zhi-hua GUO Ge +3 位作者 SUN Qian-cheng WANG Quan ZHANG Guo-dong YE Run-qing 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3376-3391,共16页
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ... The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice. 展开更多
关键词 3D laser scanning Rock discontinuity structural plane Intelligent recognition Robust randomized Hough transform Improved region growing algorithm
下载PDF
Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques 被引量:1
14
作者 Alberto Fernández JoséA.Sanchidrián +3 位作者 Pablo Segarra Santiago Gómez Enming Li Rafael Navarro 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期555-571,共17页
A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for... A procedure to recognize individual discontinuities in rock mass from measurement while drilling(MWD)technology is developed,using the binary pattern of structural rock characteristics obtained from in-hole images for calibration.Data from two underground operations with different drilling technology and different rock mass characteristics are considered,which generalizes the application of the methodology to different sites and ensures the full operational integration of MWD data analysis.Two approaches are followed for site-specific structural model building:a discontinuity index(DI)built from variations in MWD parameters,and a machine learning(ML)classifier as function of the drilling parameters and their variability.The prediction ability of the models is quantitatively assessed as the rate of recognition of discontinuities observed in borehole logs.Differences between the parameters involved in the models for each site,and differences in their weights,highlight the site-dependence of the resulting models.The ML approach offers better performance than the classical DI,with recognition rates in the range 89%to 96%.However,the simpler DI still yields fairly accurate results,with recognition rates 70%to 90%.These results validate the adaptive MWD-based methodology as an engineering solution to predict rock structural condition in underground mining operations. 展开更多
关键词 Drill monitoring technology Rock mass characterization Underground mining Similarity metrics of binary vectors Structural rock factor Machine learning
下载PDF
3D Distinct Element Back Analysis Based on Rock Structure Modelling of SfM Point Clouds:The Case of the 2019 Pinglu Rockfall of Kaili,China
15
作者 Zhen Ye Qiang Xu +2 位作者 Qian Liu Xiujun Dong Feng Pu 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1568-1582,共15页
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing proc... This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice. 展开更多
关键词 unmanned aerial vehicle(UAV) 3D point cloud rock structure KARST discontinuity sets engineeringgeology
原文传递
Application of Three-Dimensional Laser Scanning and Surveying in Geological Investigation of High Rock Slope 被引量:16
16
作者 黄润秋 董秀军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2008年第2期184-190,共7页
The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions a... The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value. 展开更多
关键词 3D laser scanning system point cloud high steep slope rock mass structure quick documentation.
下载PDF
Magnetite-Fluorite Rock:A New Rock Type of Hot Water Sedimentation 被引量:6
17
作者 XU Shaokang XIA Xuehui +4 位作者 YUAN Congjian WANG Bingquan YAN Fei YAN Shengxian ZHENG Xingquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期906-910,共5页
The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The ma... The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks. 展开更多
关键词 magnetite-fluorite rock hot water sedimentary rock hydrothermal sedimentary rock laminated structure sedimentary tectonic environment PETROCHEMISTRY
下载PDF
Mechanical model of roof on stope and its analysis 被引量:1
18
作者 王红卫 陈忠辉 +1 位作者 杜泽超 张剑 《Journal of Coal Science & Engineering(China)》 2005年第1期4-8,共5页
Based on the engineering background of No.8402 stope face in Silaogou Coal Mine of Datong Mineral Bureau and the theory of plate presented by researchers before, considering surrounding rock structure in the stope and... Based on the engineering background of No.8402 stope face in Silaogou Coal Mine of Datong Mineral Bureau and the theory of plate presented by researchers before, considering surrounding rock structure in the stope and according to mechanical property of rock bodies with various kinds of joint planes, presented an assumption that the key roof was divided into a series of elastic plate group by joint planes, then set up mechanical model of elastic plate group with pin joint. After compared the deflection and the stress in the mechanical model by numerical modeling with data from field engineering, the rule of rock plates’ break in turn and the difference in rock plates’ stress during the roof’s first and periodic weighting along the stope face were found. 展开更多
关键词 mine pressure surrounding rock structure elastic plate theory numerical modeling
下载PDF
A new method to test rock abrasiveness based on physico-mechanical and structural properties of rocks 被引量:5
19
作者 V.N.Oparin A.S.Tanaino 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期250-255,共6页
A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of propertie... A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of properties that govern rock abrasiveness on a canonical scale by dimensionless components, and the integrated estimation of the properties by a generalized index. The obtained results are compared with the known classifications of rock abrasiveness. 展开更多
关键词 Abrasiveness Physico-mechanical and structural properties of rocks Classification by abrasiveness
下载PDF
Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine 被引量:11
20
作者 Yang Renshu Li Yongliang +3 位作者 Guo Dongming Yao Lan Yang Tongmao Li Taotao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期245-252,共8页
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg... Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs. 展开更多
关键词 High stress and soft rock Water immersion Failure mechanism Large and small structures Rework control
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部