The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
The fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll(HPGR) was studied based on the characteristics of comminuted products at different specific pressure levels. The major properties ...The fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll(HPGR) was studied based on the characteristics of comminuted products at different specific pressure levels. The major properties included the reduction ratio, liberation, specific surface energy, and specific surface area. The results showed that the fracture of low-grade hematite ore in HPGR was an interactive dynamic process in which the interaction between coarse particles of gangue minerals and fine particles of valuable minerals was alternately continuous with increased compactness and compacting strength of materials. Within a range of 2.8–4.4 N/mm^2, valuable minerals were crushed after preferentially absorbing energy, whereas gangue minerals were not completely crushed and only acted as an energy transfer medium. Within a range of 4.4–5.2 N/mm^2, gangue minerals were adequately crushed after absorbing the remaining energy, whereas preferentially crushed valuable minerals acted as an energy transfer medium. Within a range of 5.2–6.0 N/mm^2 range, the low-grade hematite ore was not further comminuted because of the "size effect" on the strength of materials, and the comminution effect of materials became stable.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and ...The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.展开更多
For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theo...For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.展开更多
Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Wi...Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.展开更多
As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary ...As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.展开更多
The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as ...The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as well as rolls J and B were analyzed.The results showed that the roll gap pressure mainly affected the roll surface layer,50 mm for backup roll;the roll gap pressure distribution is of double peaks among the work roll,the 1st intermediate roll(IMR),and the 2nd IMR;the maximum value of the roll gap pressure between the backup roll and the second IMR appears on the edge of the barrel of rolls;the component force presents the in-para-curve distribution.These are important for reducing the wear of rolls and the break of the backup roll and guiding for production.展开更多
The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficie...The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficient method for elastic deformation of rolls, and the simulation of the shape and crown control on 4-high CVC hot strip mill was conducted. The simulated results indicate that the influence of the shifting of CVC work roll on shape and crown is very large, and the shifting of work roll can be used to preset shape and crown. The influence of the bending force of work roll on shape and crown is smaller, and it is suitable to use the bending force of work roll for shape and crown adjustment on line. With the increase of strip width, the exit crown of strip increases firstly and decreases then, and the roll gap becomes smoother increasingly. Meanwhile, the transverse difference of front tension stress decreases firstly and increases then.展开更多
The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single par...The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single particle data, such as the particle density, Young's modulus, Poisson's ratio as well as the sliding and rolling friction coefficients were incorporated to analyse their effects on the macroscale indicators, such as the wall pressure, discharge velocities and material outflow parameters. The effect of rolling friction was studied based on the experimentally measured single particle rolling friction coefficient. This analysis is aimed at the quantitative prediction of flow parameters as related to the identification of material parameters.展开更多
The microstructure,hardness and tensile properties have been studied in copper processed by high pressure surface rolling(HPSR)both in the as-deformed condition and after subsequent annealing at 150℃.It is found that...The microstructure,hardness and tensile properties have been studied in copper processed by high pressure surface rolling(HPSR)both in the as-deformed condition and after subsequent annealing at 150℃.It is found that a gradient structure with significant differences in the scale of microstructural features is formed by HPSR.The deformed microstructure varies from nano-and ultrafine-scale structures with a large fraction of high angle boundaries near the surface to lightly deformed grains at depths of 1-3 mm below the surface.Tensile tests of 1-mm-thick specimens demonstrate that the asdeformed material has a high strength and a low uniform elongation.Annealing at 150℃results in partial recrystallization,which creates new through-thickness gradients.Except for the topmost layer and several bands in the adjacent layer,recrystallization is more pronounced close to the surface.The fraction recrystallized is at least 80%at depths of 60-300μm after annealing for 960 min.The fraction recrystallized in the subsurface decreases with increasing depth,and the deformed layer at depths greater than 500μm re-mains largely non-recrystallized after annealing.This partially recrystallized condition demonstrates an improved combination of strength and ductility.展开更多
Investigation was conducted on roasting properties of pellets with an iron concentrate of complex mineral composition. The results indicated that the pellets of complex mineral composition concentrate required higher ...Investigation was conducted on roasting properties of pellets with an iron concentrate of complex mineral composition. The results indicated that the pellets of complex mineral composition concentrate required higher pre- heating temperature and longer preheating time than that of single magnetite concentrate. Therefore, it is difficult for preheated pellets to withstand the mechanical collision in the roasting process in rotary kiln. It was found that after the iron concentrate being subjected to high pressure roll grinding, the specific surface area reached 2 029. i cm2/g. Consequently, the preheating and roasting temperature of pellets were decreased by 70 and 50 ℃ and preheating and roasting time were decreased by 2 and 4 min, respectively. Meanwhile, the compression strength of preheated and roasted pellets were increased by 200 N for a pellet and 220 N for a pellet, respectively. The mechanism lied in that the increase of specific surface area activated thermal reaction and promoted formation of inter-grain bridge.展开更多
High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufa...High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.展开更多
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金Project(2012AA062301)supported by the National High Technology Research and Development Program of China
文摘The fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll(HPGR) was studied based on the characteristics of comminuted products at different specific pressure levels. The major properties included the reduction ratio, liberation, specific surface energy, and specific surface area. The results showed that the fracture of low-grade hematite ore in HPGR was an interactive dynamic process in which the interaction between coarse particles of gangue minerals and fine particles of valuable minerals was alternately continuous with increased compactness and compacting strength of materials. Within a range of 2.8–4.4 N/mm^2, valuable minerals were crushed after preferentially absorbing energy, whereas gangue minerals were not completely crushed and only acted as an energy transfer medium. Within a range of 4.4–5.2 N/mm^2, gangue minerals were adequately crushed after absorbing the remaining energy, whereas preferentially crushed valuable minerals acted as an energy transfer medium. Within a range of 5.2–6.0 N/mm^2 range, the low-grade hematite ore was not further comminuted because of the "size effect" on the strength of materials, and the comminution effect of materials became stable.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金This work was supported by the National Natural Science Foundation of China,No.50175095(Theory system and mechanism model of shape control of high precision plate and strip mills) 50374058(Stream surface strip element method and its application in shape control of hot rolling plate and strip).
文摘The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.
基金Project(2011BAF15B00)supported by the National Science and Technology Support Plan of ChinaProject(E2011203004)supported by the Hebei Provincial Natural Science Iron and Steel Joint Research Fund Program,China
文摘For entire roller embedded shapemeter roll, the relationship between the value of interference fit and the sensor pre-pressure, and the pressure transfer performance of shapemeter roll were analyzed by elasticity theory during the cold reversible rolling process. Considering the influence of strip temperature on the interference fit, the distributions of contact pressure of the framework's top surface and the sensor pre-pressure on different values of interference fit were analyzed by the finite element technology. The results show that the contact pressure of the framework's top surface and the sensor pre-pressure increase with the increase of the value of interference fit. When the value of interference fit is between 0.05 mm and 0.09 mm, roll body's inner hole surface, the framework and pressure magnetic sensitive component don't separate from each other, and the sensor works in the linear segment of characteristic curve, so the normal operation of shapemeter roll is guaranteed.
基金support of the Poznan Networking&Supercomputing Center(PCSS)calculation grant
文摘Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.
基金Supported by National Science and Technology Major Project of China(Grant No.2011ZX04002-101)National Science and Technology Support Plan of China(Grant No.2011BAF15B02)National Natural Science Foundation of China(Grant No.51305388)
文摘As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.
基金Item Sponsored by National Natural Science Foundation of China(50534020)
文摘The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as well as rolls J and B were analyzed.The results showed that the roll gap pressure mainly affected the roll surface layer,50 mm for backup roll;the roll gap pressure distribution is of double peaks among the work roll,the 1st intermediate roll(IMR),and the 2nd IMR;the maximum value of the roll gap pressure between the backup roll and the second IMR appears on the edge of the barrel of rolls;the component force presents the in-para-curve distribution.These are important for reducing the wear of rolls and the break of the backup roll and guiding for production.
文摘The computation model of shape and crown on 4-high CVC mill was established by combining the stream surface strip element method for analyzing three-dimensional plastic deformation of strip and the influence coefficient method for elastic deformation of rolls, and the simulation of the shape and crown control on 4-high CVC hot strip mill was conducted. The simulated results indicate that the influence of the shifting of CVC work roll on shape and crown is very large, and the shifting of work roll can be used to preset shape and crown. The influence of the bending force of work roll on shape and crown is smaller, and it is suitable to use the bending force of work roll for shape and crown adjustment on line. With the increase of strip width, the exit crown of strip increases firstly and decreases then, and the roll gap becomes smoother increasingly. Meanwhile, the transverse difference of front tension stress decreases firstly and increases then.
文摘The present paper provides both experimental and DEM analyses of the filling and discharge of pea grains from a 3D flat-bottomed bin. In the DEM model, the fixed mean values of the experimentally determined single particle data, such as the particle density, Young's modulus, Poisson's ratio as well as the sliding and rolling friction coefficients were incorporated to analyse their effects on the macroscale indicators, such as the wall pressure, discharge velocities and material outflow parameters. The effect of rolling friction was studied based on the experimentally measured single particle rolling friction coefficient. This analysis is aimed at the quantitative prediction of flow parameters as related to the identification of material parameters.
基金supported by the National Natural Science Foundation of China(No.52071038).QYH acknowledges funding from the Natural Science Foundation of Chongqing(grant cstc2021jcyj-msxmX1185).
文摘The microstructure,hardness and tensile properties have been studied in copper processed by high pressure surface rolling(HPSR)both in the as-deformed condition and after subsequent annealing at 150℃.It is found that a gradient structure with significant differences in the scale of microstructural features is formed by HPSR.The deformed microstructure varies from nano-and ultrafine-scale structures with a large fraction of high angle boundaries near the surface to lightly deformed grains at depths of 1-3 mm below the surface.Tensile tests of 1-mm-thick specimens demonstrate that the asdeformed material has a high strength and a low uniform elongation.Annealing at 150℃results in partial recrystallization,which creates new through-thickness gradients.Except for the topmost layer and several bands in the adjacent layer,recrystallization is more pronounced close to the surface.The fraction recrystallized is at least 80%at depths of 60-300μm after annealing for 960 min.The fraction recrystallized in the subsurface decreases with increasing depth,and the deformed layer at depths greater than 500μm re-mains largely non-recrystallized after annealing.This partially recrystallized condition demonstrates an improved combination of strength and ductility.
基金Item Sponsored by National Natural Science Foundation of China(50725416)
文摘Investigation was conducted on roasting properties of pellets with an iron concentrate of complex mineral composition. The results indicated that the pellets of complex mineral composition concentrate required higher pre- heating temperature and longer preheating time than that of single magnetite concentrate. Therefore, it is difficult for preheated pellets to withstand the mechanical collision in the roasting process in rotary kiln. It was found that after the iron concentrate being subjected to high pressure roll grinding, the specific surface area reached 2 029. i cm2/g. Consequently, the preheating and roasting temperature of pellets were decreased by 70 and 50 ℃ and preheating and roasting time were decreased by 2 and 4 min, respectively. Meanwhile, the compression strength of preheated and roasted pellets were increased by 200 N for a pellet and 220 N for a pellet, respectively. The mechanism lied in that the increase of specific surface area activated thermal reaction and promoted formation of inter-grain bridge.
基金Item Sponsored by National Torch Program Project of China(2011GH561685)
文摘High pressure roll grinding(HPRG)and ball milling were compared to investigate the influence of mechanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was manufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indicated that when high-phosphorus iron ore concentrates containing 54.92 mass% iron and 0.76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55.74mass%iron and 0.33mass%phosphorus with an iron recovery of 84.64%and dephosphorization of 63.79% were obtained.When high-phosphorus iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing56.03mass%iron and 0.21mass% phosphorus with an iron recovery of 85.65% and dephosphorization of 77.49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58.02mass%iron and 0.10mass% phosphorus were obtained,with the iron recovery reaching 88.42% and the dephosphorization rate reaching 88.99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating aprominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical activation,further strengthening the dephosphorization.