According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m...According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.展开更多
To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring art...To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.展开更多
In order to further speed up the construction progress,shorten the rolling time and reduce the rolling times of roller compacted concrete after analyzing work of construction progress improvement measures of roller co...In order to further speed up the construction progress,shorten the rolling time and reduce the rolling times of roller compacted concrete after analyzing work of construction progress improvement measures of roller compacted concrete,research on vibration sensitive admixture is carried out and satisfactory results are acquired.The new type vibration sensitive admixture was used in the project of Jinghong hydropower station in Yunnan Province,China.The engineering experimental results show that various indexes have been verified.Meanwhile,the compactness of roller compacted concrete is improved under the same rolling times,the rolling times and the duration time can be reduced under the same compactness requirement in construction practice.展开更多
The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on t...The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on the real-time analysis of the compaction index, a multiple regression model of the dam compactness was established and a realime estimation method of compaction quality for the entire work area of roller compacted concrete dam was proposed finally. The adaptive adjustment of the roiling process parameters was achieved, with the speed, the exciting force, the roller pass and the compaction thickness meeting the standards during the whole construction process. As a result, the compaction quality and construction efficiency can be improved. The research provides a new way for the construction quality control of roller compacted concrete dam.展开更多
Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a maj...Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.展开更多
This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash additio...This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.展开更多
A new roller compacted concrete dam of Fengman Hydropower Station is to be built in the toe of the old dam,which was identified as a dangerous dam.The new dam during construction would be influenced by the high-speed ...A new roller compacted concrete dam of Fengman Hydropower Station is to be built in the toe of the old dam,which was identified as a dangerous dam.The new dam during construction would be influenced by the high-speed flow discharged from the old dam,which is an important problem to be considered for the first time in China,and which would affect the construction of the whole project.Therefore,a series of erosion experiments were conducted in this article.A high-speed flow erosion test apparatus was developed for the erosion experiments of the new dam materials.The maximum jet velocity goes up to 40 m/s and the section area of the nozzle is 0.0025 m2.In the process of experiments,the equipment shows a good performance.Erosive wear tests for two types of materials used in the new dam,a roller compacted concrete and a distorted concrete with four kinds of ages were carried out with the flow velocity in the range of 30 m/s-35 m/s.Erosion parameters and erosion laws for the two types of concretes with different ages were determined,and a general relationship between the erosion rate and the flow velocity is obtained as:,with the velocity exponent between 3.33 and 3.93.It is concluded that the erosion resistance of the distorted concrete is better than that of the roller compacted concrete and the mechanical properties of the concretes of over 14 d age are influenced slightly by the water impact.The test results might serve as a practical technique guide for the safety of this project during its construction in the flood season.展开更多
In view of the diversity and complexity of mechanical parameters of roller compacted concrete dam(RCCD),the uniform design method,partial least-squares regression(PLS)and least squares support vector machine(LSSVM)wer...In view of the diversity and complexity of mechanical parameters of roller compacted concrete dam(RCCD),the uniform design method,partial least-squares regression(PLS)and least squares support vector machine(LSSVM)were applied to the back analysis of RCCD with the use of the complex nonlinear relationship between dam mechanical parameters and dam displacements.During the process of back analysis,the initial samples of parameters were designed with uniform design method.Then,a transversely isotropic model of RCCD was established by MSC.Marc software.Through this model,training samples of LSSVM model could be obtained.And then,the complex nonlinear relationship between relative values of hydraulic components of dam displacements and mechanical parameters was established.Finally,actual relative values of dam hydraulic components are isolated from the measured data of dam displacements by using PLS.By inputting the isolated relative values into LSSVM model,the back analysis values of RCCD mechanical parameters can be obtained.The example analysis showed that mechanical parameters obtained by the above-mentioned back analysis method are reasonable,and the back analysis method is feasible.展开更多
The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The...The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.展开更多
基金Projects(51139001,51179066,51079046,50909041) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0359) supported by the Program for New Century Excellent Talents in UniversityProjects(2009586012,2009586912,2010585212)supported by the Special Fund of State Key Laboratory of China
文摘According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.
基金Projects(20120094110005,20120094130003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(51379068,51139001,51279052,51209077,51179066)supported by the National Natural Science Foundation of China+1 种基金Project(NCET-11-0628)supported by the Program for New Century Excellent Talents in University,ChinaProjects(201201038,201101013)supported by the Public Welfare Industry Research Special Fund Project of Ministry of Water Resources of China
文摘To study the influence of construction interfaces on dynamic characteristics of roller compacted concrete dams(RCCDs),mechanical properties of construction interfaces are firstly analyzed. Then, the viscous-spring artificial boundary(VSAB) is adopted to simulate the radiation damping of their infinite foundations, and based on the Marc software, a simplified seismic motion input method is presented by the equivalent nodal loads. Finally, based on the practical engineering of a RCC gravity dam, effects of radiation damping and construction interfaces on the dynamic characteristics of dams are investigated in detail. Analysis results show that dynamic response of the RCC gravity dam significantly reduces about 25% when the radiation damping of infinite foundation is considered. Hot interfaces and the normal cold interfaces have little influence on the dynamic response of the RCC gravity dam.However, nonlinear fracture along the cold interfaces at the dam heel will occur under the designed earthquake if the cold interfaces are combined poorly. Therefore, to avoid the fractures along the construction interfaces under the potential super earthquakes,combination quality of the RCC layers should be significantly ensured.
文摘In order to further speed up the construction progress,shorten the rolling time and reduce the rolling times of roller compacted concrete after analyzing work of construction progress improvement measures of roller compacted concrete,research on vibration sensitive admixture is carried out and satisfactory results are acquired.The new type vibration sensitive admixture was used in the project of Jinghong hydropower station in Yunnan Province,China.The engineering experimental results show that various indexes have been verified.Meanwhile,the compactness of roller compacted concrete is improved under the same rolling times,the rolling times and the duration time can be reduced under the same compactness requirement in construction practice.
基金National Natural Science Foundation of China (No. 51021004No. 51079096)the Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘The concept and realization process of intelligent compaction for the construction of high roller compacted concrete dam were presented, as well as the theory of monitoring and intelligent feedback control. Based on the real-time analysis of the compaction index, a multiple regression model of the dam compactness was established and a realime estimation method of compaction quality for the entire work area of roller compacted concrete dam was proposed finally. The adaptive adjustment of the roiling process parameters was achieved, with the speed, the exciting force, the roller pass and the compaction thickness meeting the standards during the whole construction process. As a result, the compaction quality and construction efficiency can be improved. The research provides a new way for the construction quality control of roller compacted concrete dam.
文摘Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.
文摘This research investigated the use of wood ash to partially replace cement or sand in conventional concrete, roller compacted concrete (RCC), and flowable fill. The main focus was to determine how the wood ash addition affected the main fresh and hardened properties of these materials. It was found that the wood ash could be successfully incorporated into the conventional concrete. In particular, the wood ash addition not only accelerated the setting, but also improved the early and the 28-day compressive strength of concrete that contained the blast furnace slag. It was also observed that the wood ash could be positively added into RCC to facilitate the compaction and reduce the risk of segregation. In addition, the wood ash can be beneficially introduced into the flowable fill mixtures to facilitate flow, to alleviate bleeding and subsidence, as well as to achieve controlled strength especially when combined with the class C or the class F fly ash.
基金supported by the National Natural Science Foundation of China(Grant No.51109143)the 11th Five Year Plan National Key Programs for Science and Technology Development of China(Grant No.2009BAK56B04)the Natural Science Foundation of Jiangsu Province(Grant No.BK2011109).
文摘A new roller compacted concrete dam of Fengman Hydropower Station is to be built in the toe of the old dam,which was identified as a dangerous dam.The new dam during construction would be influenced by the high-speed flow discharged from the old dam,which is an important problem to be considered for the first time in China,and which would affect the construction of the whole project.Therefore,a series of erosion experiments were conducted in this article.A high-speed flow erosion test apparatus was developed for the erosion experiments of the new dam materials.The maximum jet velocity goes up to 40 m/s and the section area of the nozzle is 0.0025 m2.In the process of experiments,the equipment shows a good performance.Erosive wear tests for two types of materials used in the new dam,a roller compacted concrete and a distorted concrete with four kinds of ages were carried out with the flow velocity in the range of 30 m/s-35 m/s.Erosion parameters and erosion laws for the two types of concretes with different ages were determined,and a general relationship between the erosion rate and the flow velocity is obtained as:,with the velocity exponent between 3.33 and 3.93.It is concluded that the erosion resistance of the distorted concrete is better than that of the roller compacted concrete and the mechanical properties of the concretes of over 14 d age are influenced slightly by the water impact.The test results might serve as a practical technique guide for the safety of this project during its construction in the flood season.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909041,50539110,50809025 and 50879024)National Science and Technology Support Plan(Grant Nos.2008BAB29B03 and 2008BAB29B06)+2 种基金China Hydropower Engineering Consulting Group Co.Science and Technology Support Project(Grant No.CHC-KJ-2007-02)Jiangsu Province"333 High-Level Personnel Training Project"(Grant No.2017-B08037)Science Foundation for The Excellent Youth Scholars of Ministry of Education of China(Grant No.20070294023)
文摘In view of the diversity and complexity of mechanical parameters of roller compacted concrete dam(RCCD),the uniform design method,partial least-squares regression(PLS)and least squares support vector machine(LSSVM)were applied to the back analysis of RCCD with the use of the complex nonlinear relationship between dam mechanical parameters and dam displacements.During the process of back analysis,the initial samples of parameters were designed with uniform design method.Then,a transversely isotropic model of RCCD was established by MSC.Marc software.Through this model,training samples of LSSVM model could be obtained.And then,the complex nonlinear relationship between relative values of hydraulic components of dam displacements and mechanical parameters was established.Finally,actual relative values of dam hydraulic components are isolated from the measured data of dam displacements by using PLS.By inputting the isolated relative values into LSSVM model,the back analysis values of RCCD mechanical parameters can be obtained.The example analysis showed that mechanical parameters obtained by the above-mentioned back analysis method are reasonable,and the back analysis method is feasible.
基金conducted under research project (Development of Eco-Friendly Pavements to Minimize Greenhouse Gas Emissions) funded by the Ministry of Land, Infrastructure and Transport (MOLIT) and the Korea Agency for Infrastructure Technology Advancement (KAIA)
文摘The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.