Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuz...Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.展开更多
A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces ...A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.展开更多
A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then...A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then the equation of motion for the system is analytically derived by applying the theorem of the relative kinetic energy for a system of particles in differential form in the non-inertial reference system described as a nonlinear differential equation. In the case of the small angular displacement, the natural frequency of the corresponding undamped linear system is obtained, which is consistent with the experimental observation. The derived equation is useful for the study of dynamic characteristics of novel FPS, and its solution directly expedites the simulation of the system in a control loop, and further facilitates the semi-active control process including novel FPS.展开更多
The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resi...The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resistance of roller press was proposed from three aspects of wear-resistant material, roller press roller structure, and surface morphology.展开更多
Roller chain drives are widely used in various high-speed, high-load and power transmission applications, but their complex dynamic behavior is not well researched. Most studies were only focused on the analysis of th...Roller chain drives are widely used in various high-speed, high-load and power transmission applications, but their complex dynamic behavior is not well researched. Most studies were only focused on the analysis of the vibration of chain tight span, and in these models, many factors are neglected. In this paper, a mathematical model is developed to calculate the dynamic response of a roller chain drive working at constant or variable speed condition. In the model, the complete chain transmission with two sprockets and the necessary tight and slack spans is used. The effect of the flexibility of input shaft on dynamic response of the chain system is taken into account, as well as the elastic deformation in the chain, the inertial forces, the gravity and the torque on driven shaft. The nonlinear equations of movement are derived from using Lagrange equations and solved numerically. Given the center distance and the two initial position angles of teeth on driving and driven sprockets corresponding to the first seating roller on each side of the tight span, dynamics of any roller chain drive with two sprockets and two spans can be analyzed by the procedure. Finally, a numerical example is given and the validity of the procedure developed is demonstrated by analyzing the dynamic behavior of a typical roller chain drive. The model can well simulate the transverse and longitudinal vibration of the chain spans and the torsional vibration of the sprockets. This study can provide an effective method for the analysis of the dynamic characteristics of all the chain drive systems.展开更多
The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib...The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.展开更多
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the veh...In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.展开更多
Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption...Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.展开更多
A roller rack pinion(RRP)system,which consists of a rack-bar and a cam pinion,transforms a rotation motion into linear motion.The rack-bar has a series of roller train and meshes with the cam pinion.First,the exact to...A roller rack pinion(RRP)system,which consists of a rack-bar and a cam pinion,transforms a rotation motion into linear motion.The rack-bar has a series of roller train and meshes with the cam pinion.First,the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance have been proposed with the introduction of the profile shift coefficient.Then,the load stress factors are investigated under the variation of the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch.The results show that the pitting life can be extended significantly with the increase of the profile shift coefficient.展开更多
The vibratory roller is a piece of vital construction machinery in the field of road construction.The unmanned vibratory roller efficiently utilizes the automated driving technology in the vehicle engineering field,wh...The vibratory roller is a piece of vital construction machinery in the field of road construction.The unmanned vibratory roller efficiently utilizes the automated driving technology in the vehicle engineering field,which is innovative for the unmanned road construction.This paper develops and implements the autonomous construction system for the unmanned vibratory roller.Not only does the roller have the function of remote-controlled driving,but it also has the capability of autonomous road construction.The overall system design uses the Programmable Logic Controller(PLC)as the kernel controller.It establishes the communication network through multiple Input/Output(I/O)modules,Recommended Standard 232(RS232)serial port,Controller Area Network(CAN)bus,and wireless networks to control the roller vehicle completely.The locating information is obtained through the Global Navigation Satellite System(GNSS)satellite navigation equipment group to support the process of autonomous construction.According to the experimental results,the autonomous construction system can finally enable the roller to perform driving operations and construction independently,which was a significant step forward in engineering application.展开更多
The mechanical-touched detector was used commonly in textile production limes. It has some defect with high false alarm rate, response delay and high maintenance cost. In order to overcome such defects, a new kind dev...The mechanical-touched detector was used commonly in textile production limes. It has some defect with high false alarm rate, response delay and high maintenance cost. In order to overcome such defects, a new kind device was developed and used to detect roller tangled in the production lines. It is based on image processing. The core algorithm was composed of Canny edge detection, removing interference, detection of perpendicularity line and detection of broken tow. After the four steps, the broken tow could be recognized quickly and correctly. The algorithm is robust and high efficiency. So, the detection device has characteristic of stable, quickly-response and low maintains cost. It can keep superiority with long lifespan even in more formidable conditions. It guarantees a safe and stable production condition.展开更多
The purpose of this research is to investigate the impact of movable solar shading on energy performance in subtropical regions of China.An office building retrofitted with a novel internal roller shading system consi...The purpose of this research is to investigate the impact of movable solar shading on energy performance in subtropical regions of China.An office building retrofitted with a novel internal roller shading system consisting of two shading layers was selected to carry out field measurements and numerous computer simulations were conducted in order to quantify the energy saving performance of this solar shading system,which was further compared with commonly used Low-E windows and regular fabric roller shades.The results show that the solar transmittance ratio is only 1.3%to 7%depending on used solar shading layers in summer and there is almost no negative impact on heating season in winter.The room base temperature reduction ranges from 4-14oC in summer,indicating a significant indoor thermal performance improvement.Meanwhile,the total energy saving for this shading system is 26.06%,24.42%and over 50%,respectively,compared to Low-E windows,fabric roller shades and the bare window case.Thus,this novel solar shading system is a high energy saving measure and can be widely used in a subtropical zone.展开更多
We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuratio...We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuration lessens wear, increases load capacity, and improves efficiency. The threaded chain consists of nut-shaped links. This paper presents the results of tests carried out on a prototype with a reduction ratio of 46.展开更多
Rice leaf roller (Cnaphalocrocis medinalis Guenée) is a migratory pest, which mainly causes damage on rice. The morphology characteristic of rice leaf roller is introduced, which is also compared with the morph...Rice leaf roller (Cnaphalocrocis medinalis Guenée) is a migratory pest, which mainly causes damage on rice. The morphology characteristic of rice leaf roller is introduced, which is also compared with the morphology characteristic of the other insects such as Susumia exigua Butler and Tryporyza incertulas (walker). The occurrence law, living habit and selection of prevention pesticides against rice leaf roller in China are summarized, which will provide the intergrated situation of rice leaf roller in China for worldwide further research on the insect.展开更多
In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firs...In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firstly,the nonlinear damping parameters and nonlinear stiffness parameters within interface of the rolling mill are both considered,and a fractional-order differential term is also introduced to model the horizontal nonlinear vibration.Secondly,the averaging method is introduced to solve the forced vibration system of the mill roll system,and the amplitude-frequency characteristic curves of the system are obtained for different orders,external excitation amplitudes,stiffness and fractional order coefficients.Thirdly,the amplitude-frequency and phasefrequency characteristics of the free vibration of the mill roll system are investigated at different fractional orders.Then,the accuracy of the averaging method for solving the dynamic characteristics of the system is verified by numerical analysis,and the effect of the fractional differential term coefficients and order on the dynamic characteristics of the roll system are investigated.Finally,the time-frequency characteristics and phase-frequency characteristics of free vibration systems at different fractional orders are studied.The validity of the theoretical study is also verified through experiments.展开更多
The clearances appear in chain link hinges induced by manufacturing tolerance or wear of components are the most important factor that influences the dynamic performance of the intermittent roller chain drives. Due to...The clearances appear in chain link hinges induced by manufacturing tolerance or wear of components are the most important factor that influences the dynamic performance of the intermittent roller chain drives. Due to the existence of the clearances in chain link hinges, the serious impact vibration phenomenon which influences the stability and the position accuracy of the chain drive system would be caused in the intermittent motion. But, the problem may be that a reasonable modeling on the chain with clearances is difficult due to the large clearance's number in chain system and the fact that the clearance' size are different. Currently, the studies on the dynamics of the intermittent roller chain considering the multi-clearance' joints are rare. Most research works have only focused on the constant moving chains. Taking the intermittent roller chain system as an object, this paper designs and builds the experimental device of this kind of mechanical system. The Longitudinal vibration response of the intermittent chain under the different motion laws was tested. The experimental study shows that the clearances presented in chain link hinges can cause severe impact vibration in the intermittent motion of chain. In subsequent work, the dynamic model of the intermittent roller chain system with the multi-clearance' joints was established. By calculating the dynamic response of this kind of mechanical system under the different motion laws, the effect of the clearances on the dynamic response of the intermittent chain drive system was analyzed. The theoretical simulation shows that the serious impact vibration phenomenon of the chain system can be caused by the clearances at the start accelerating period, and the chain drive system is often accompanied by the severe shock and vibration at the moment that the chain moves from the acceleration period to deceleration period. The research conclusions made by the experimental and theoretical studies indicate that the use of motion laws with small and continuous jerk at conversion point can effectively suppress the impact vibration at this point caused by clearances' effect. Additionally, the use of nonsymmetrical motion laws with small jerk approaching the end of the indexing period can obtain a smaller residual vibration. The presented motion law can provide an important reference for the improvement of the dynamic performance of the intermittent chain drive systems.展开更多
Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi-...Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi- ciency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state- feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simu- lation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial dis- placement error (-1.5 m), heading error (-0.11 tad) and steering angle (-0.19 rad). Finally, simulation and exper- imental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articu- lated drum roller can lock into a desired path with the proposed method in uneven fields.展开更多
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t...A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.展开更多
文摘Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.
基金National Natural Science Foundation of China(50575054)973Program(2007CB607602)
文摘A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.
文摘A novel friction pendulum system (FPS) with dual rollers is studied based on the multibody dynamics theory. By analyzing kinematic characteristics of the system, it is reduced to a one degree-of-freedom system. Then the equation of motion for the system is analytically derived by applying the theorem of the relative kinetic energy for a system of particles in differential form in the non-inertial reference system described as a nonlinear differential equation. In the case of the small angular displacement, the natural frequency of the corresponding undamped linear system is obtained, which is consistent with the experimental observation. The derived equation is useful for the study of dynamic characteristics of novel FPS, and its solution directly expedites the simulation of the system in a control loop, and further facilitates the semi-active control process including novel FPS.
基金Supported by the Planning Project of Science and Technology Development of Jilin Province (09ZDGG001)~~
文摘The working principle of cement roller press and current development of wear resistance on the cement grinding system status at home and abroad was described. The main improvement of previous research on the wear resistance of roller press was proposed from three aspects of wear-resistant material, roller press roller structure, and surface morphology.
基金supported by National Natural Science Foundation of China (Grant No. 50605060)Tianjin Municipal Science Foundation of China (Grant No. 06YFJMJC03300)
文摘Roller chain drives are widely used in various high-speed, high-load and power transmission applications, but their complex dynamic behavior is not well researched. Most studies were only focused on the analysis of the vibration of chain tight span, and in these models, many factors are neglected. In this paper, a mathematical model is developed to calculate the dynamic response of a roller chain drive working at constant or variable speed condition. In the model, the complete chain transmission with two sprockets and the necessary tight and slack spans is used. The effect of the flexibility of input shaft on dynamic response of the chain system is taken into account, as well as the elastic deformation in the chain, the inertial forces, the gravity and the torque on driven shaft. The nonlinear equations of movement are derived from using Lagrange equations and solved numerically. Given the center distance and the two initial position angles of teeth on driving and driven sprockets corresponding to the first seating roller on each side of the tight span, dynamics of any roller chain drive with two sprockets and two spans can be analyzed by the procedure. Finally, a numerical example is given and the validity of the procedure developed is demonstrated by analyzing the dynamic behavior of a typical roller chain drive. The model can well simulate the transverse and longitudinal vibration of the chain spans and the torsional vibration of the sprockets. This study can provide an effective method for the analysis of the dynamic characteristics of all the chain drive systems.
文摘The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.
基金The National Key Research and Development Plan(No.2019YFB2006402)
文摘In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.
基金Supported by the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q14024)
文摘Conventional no-till seeders should cut or remove crop straw and residue,when in operation and thus present a number of problems,including high performance requirements for the cutting component,high power consumption,dust raising and interference from intertwined straw.In view of this,in this study,a driving roller dibbling-type no-till seeding and hole-forming(DGR-NT-SHF)system was designed to be capable of penetrating soil and creating holes without requiring any special preparation of the surface covering.The core mechanism of this system consisted of a land wheel-driven driving roller and a duckbill-type roller seeder,which were internally tangent to one another.The rotating roller rolled the straw into a thin layer,and the duckbills extended from the roller and penetrated this thin layer of straw and subsequently formed the holes and planted the seeds.Based on kinematic analysis,a mathematical model was established to depict the relations between the rear angle of the duckbill(α),the front angle of the duckbill(β),the angular velocity of the duckbill-type roller seeder(ω0),the angular velocity of the roller(ω1),and the aperture of the duckbill outlet on the roller(θ).In contrast to a driven roller-type no-till seeding and hole-forming DNR-NT-SHF system,several parameters of the DGR-NT-SHF system were established for planting seeds at a plant spacing that was an integral multiple of 100 mm:the radius of the duckbill-type roller seeder,200 mm;radius of the roller,400 mm;α,23°;andβ,5°.Based on the analysis of the models using the MATLAB Image Processing Module with a relation betweenω1 and the number of outlets on the roller as the constraint,the optimal number of outlets on the roller and theω1/ω0 ratio were determined to be 21 and 4/7,respectively.Kinematic simulation on a digital prototype was performed using computer aided three-dimensional interactive application(CATIA)to observe the motion of the DGR-NT-SHF system,when the duckbills on the duckbill-type roller seeder were open and to determine the locations of the duckbills relative to the outlets.To ensure the duckbills could be successfully opened,the chord length of the outlets was ultimately determined to be 71 mm.The prototype test results showed that the DGR-NT-SHF system met the design requirements and that the operation was straightforward and reliable.In addition,compared to the DNR-NT-SHF system,the DGR-NT-SHF system performed better in penetration and exerted no impact on the duckbills,thus providing an effective technical option for no-till seeding.
基金Research financially supported by Changwon National University in 2011-2012,Korea
文摘A roller rack pinion(RRP)system,which consists of a rack-bar and a cam pinion,transforms a rotation motion into linear motion.The rack-bar has a series of roller train and meshes with the cam pinion.First,the exact tooth profile of the cam pinion and the non-undercut condition to satisfy the required performance have been proposed with the introduction of the profile shift coefficient.Then,the load stress factors are investigated under the variation of the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch.The results show that the pitting life can be extended significantly with the increase of the profile shift coefficient.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(BK20170681,BK20180701)the National Natural Science Foundation of China(51675281).
文摘The vibratory roller is a piece of vital construction machinery in the field of road construction.The unmanned vibratory roller efficiently utilizes the automated driving technology in the vehicle engineering field,which is innovative for the unmanned road construction.This paper develops and implements the autonomous construction system for the unmanned vibratory roller.Not only does the roller have the function of remote-controlled driving,but it also has the capability of autonomous road construction.The overall system design uses the Programmable Logic Controller(PLC)as the kernel controller.It establishes the communication network through multiple Input/Output(I/O)modules,Recommended Standard 232(RS232)serial port,Controller Area Network(CAN)bus,and wireless networks to control the roller vehicle completely.The locating information is obtained through the Global Navigation Satellite System(GNSS)satellite navigation equipment group to support the process of autonomous construction.According to the experimental results,the autonomous construction system can finally enable the roller to perform driving operations and construction independently,which was a significant step forward in engineering application.
文摘The mechanical-touched detector was used commonly in textile production limes. It has some defect with high false alarm rate, response delay and high maintenance cost. In order to overcome such defects, a new kind device was developed and used to detect roller tangled in the production lines. It is based on image processing. The core algorithm was composed of Canny edge detection, removing interference, detection of perpendicularity line and detection of broken tow. After the four steps, the broken tow could be recognized quickly and correctly. The algorithm is robust and high efficiency. So, the detection device has characteristic of stable, quickly-response and low maintains cost. It can keep superiority with long lifespan even in more formidable conditions. It guarantees a safe and stable production condition.
基金the natural science foundation of Ningbo city(2012A610158)Zhejiang Province(LQ13E080009)。
文摘The purpose of this research is to investigate the impact of movable solar shading on energy performance in subtropical regions of China.An office building retrofitted with a novel internal roller shading system consisting of two shading layers was selected to carry out field measurements and numerous computer simulations were conducted in order to quantify the energy saving performance of this solar shading system,which was further compared with commonly used Low-E windows and regular fabric roller shades.The results show that the solar transmittance ratio is only 1.3%to 7%depending on used solar shading layers in summer and there is almost no negative impact on heating season in winter.The room base temperature reduction ranges from 4-14oC in summer,indicating a significant indoor thermal performance improvement.Meanwhile,the total energy saving for this shading system is 26.06%,24.42%and over 50%,respectively,compared to Low-E windows,fabric roller shades and the bare window case.Thus,this novel solar shading system is a high energy saving measure and can be widely used in a subtropical zone.
文摘We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuration lessens wear, increases load capacity, and improves efficiency. The threaded chain consists of nut-shaped links. This paper presents the results of tests carried out on a prototype with a reduction ratio of 46.
文摘Rice leaf roller (Cnaphalocrocis medinalis Guenée) is a migratory pest, which mainly causes damage on rice. The morphology characteristic of rice leaf roller is introduced, which is also compared with the morphology characteristic of the other insects such as Susumia exigua Butler and Tryporyza incertulas (walker). The occurrence law, living habit and selection of prevention pesticides against rice leaf roller in China are summarized, which will provide the intergrated situation of rice leaf roller in China for worldwide further research on the insect.
基金supported by the National Key Research and Development Program of China (No.2018YFA0707300)the National Natural Science Foundation of China (Nos.51905372, 51804215)+1 种基金the State Key Laboratory of Metal Extrusion and Forging Equipment Technology Open-end FundsChengdu Technological University Laboratory Open Fund.
文摘In this paper,the main researches are focused on the horizontal nonlinear vibration characteristics of roll systems for rolling mill,mainly including the study of forced vibration and free vibration of the roller.Firstly,the nonlinear damping parameters and nonlinear stiffness parameters within interface of the rolling mill are both considered,and a fractional-order differential term is also introduced to model the horizontal nonlinear vibration.Secondly,the averaging method is introduced to solve the forced vibration system of the mill roll system,and the amplitude-frequency characteristic curves of the system are obtained for different orders,external excitation amplitudes,stiffness and fractional order coefficients.Thirdly,the amplitude-frequency and phasefrequency characteristics of the free vibration of the mill roll system are investigated at different fractional orders.Then,the accuracy of the averaging method for solving the dynamic characteristics of the system is verified by numerical analysis,and the effect of the fractional differential term coefficients and order on the dynamic characteristics of the roll system are investigated.Finally,the time-frequency characteristics and phase-frequency characteristics of free vibration systems at different fractional orders are studied.The validity of the theoretical study is also verified through experiments.
基金supported by National Natural Science Foundation of China (Grant No. 50605060)Tianjin Municipal Natural Science Foundation of China (Grant No. 06YFJMJC03300)
文摘The clearances appear in chain link hinges induced by manufacturing tolerance or wear of components are the most important factor that influences the dynamic performance of the intermittent roller chain drives. Due to the existence of the clearances in chain link hinges, the serious impact vibration phenomenon which influences the stability and the position accuracy of the chain drive system would be caused in the intermittent motion. But, the problem may be that a reasonable modeling on the chain with clearances is difficult due to the large clearance's number in chain system and the fact that the clearance' size are different. Currently, the studies on the dynamics of the intermittent roller chain considering the multi-clearance' joints are rare. Most research works have only focused on the constant moving chains. Taking the intermittent roller chain system as an object, this paper designs and builds the experimental device of this kind of mechanical system. The Longitudinal vibration response of the intermittent chain under the different motion laws was tested. The experimental study shows that the clearances presented in chain link hinges can cause severe impact vibration in the intermittent motion of chain. In subsequent work, the dynamic model of the intermittent roller chain system with the multi-clearance' joints was established. By calculating the dynamic response of this kind of mechanical system under the different motion laws, the effect of the clearances on the dynamic response of the intermittent chain drive system was analyzed. The theoretical simulation shows that the serious impact vibration phenomenon of the chain system can be caused by the clearances at the start accelerating period, and the chain drive system is often accompanied by the severe shock and vibration at the moment that the chain moves from the acceleration period to deceleration period. The research conclusions made by the experimental and theoretical studies indicate that the use of motion laws with small and continuous jerk at conversion point can effectively suppress the impact vibration at this point caused by clearances' effect. Additionally, the use of nonsymmetrical motion laws with small jerk approaching the end of the indexing period can obtain a smaller residual vibration. The presented motion law can provide an important reference for the improvement of the dynamic performance of the intermittent chain drive systems.
基金Supported by National Key Technology Support Program of China(Grant No.2015BAF07B05)Fundamental Research Funds for the Central Universities of China
文摘Automatic navigation of an articulated drum roller, which is an articulated steering type vehicle widely used in the construction industry, is highly expected for operation cost reduction and improvement of work effi- ciency. In order to achieve the path following control, considering that its steering system is articulated steering and two frames are articulated by an active revolute joint, a kinematic model and an error dynamic state-space equation of an articulated drum roller are proposed. Besides, a state- feedback control law based on Lyapunov stability theory is also designed, which can be proved to achieve the purpose of control by the analysis of stability. What's more, to evaluate the performance of the proposed method, simu- lation under the MATLAB/Simulink and experiments using positioning algorithm and errors correction at the uneven construction site are performed, with initial dis- placement error (-1.5 m), heading error (-0.11 tad) and steering angle (-0.19 rad). Finally, simulation and exper- imental results show that the errors and steering angle can decrease gradually, and converge to zero with time. Meanwhile, the control input is not saturated. An articu- lated drum roller can lock into a desired path with the proposed method in uneven fields.
基金Project(51175168)supported by the National Natural Science Foundation of ChinaProjects(2011GK3148,2012GK3092)supported by Science and Technology Program of Hunan Province,China
文摘A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.