Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which t...Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.展开更多
Nucleate pool boiling process is widely used in heat exchangers because of its excellent heat transfer performance.With the gradual increase of applications,more and more equipments work in a non-static state,but ther...Nucleate pool boiling process is widely used in heat exchangers because of its excellent heat transfer performance.With the gradual increase of applications,more and more equipments work in a non-static state,but there is little research under rolling conditions.Therefore,it is necessary to investigate the influence of rolling motion on the nucleate pool boiling process.In this study,a numerical investigation of the nucleate pool boiling process under static and rolling conditions is performed based on the volume-of-fluid(VOF)method.Physical fields and phase distribution under static state and rolling motion are compared to investigate the effect of rolling motion on the nucleate pool boiling process.The results show that rolling motion greatly influences the bubble behavior and void fraction owing to the differences between flow fields.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°,and by 11.84%,22.27%,and 21.81%as the rolling period increased from 1 s to 3 s.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°.The heat transfer coefficients of different cases are compared,and it is found that the effects of rolling motion on heat transfer coefficients can be ignored.展开更多
Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ho...Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.展开更多
基金the National Natural Science Foundation of China(No.50334010)the Program of Education Branch of Liaoning Province of China(No.2006B075)
文摘Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel was investigated. Thermomechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finish rolling temperatures were applied. The results show that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. The finer ferrite grain size is produced through the deformation induced transformation during deformation rather than after deformation, which affects the mechanical properties of hot rolled TRIP steel. Mechanical properties increase with decreasing finish rolling temperature due to the stabilization of retained austenite. Ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) reaches optimal values (791 MPa, 36% and 28 476 MPa%, respectively) when the specimen was hot rolled for 50% reduction at finish rolling temperature of 700 ℃.
文摘Nucleate pool boiling process is widely used in heat exchangers because of its excellent heat transfer performance.With the gradual increase of applications,more and more equipments work in a non-static state,but there is little research under rolling conditions.Therefore,it is necessary to investigate the influence of rolling motion on the nucleate pool boiling process.In this study,a numerical investigation of the nucleate pool boiling process under static and rolling conditions is performed based on the volume-of-fluid(VOF)method.Physical fields and phase distribution under static state and rolling motion are compared to investigate the effect of rolling motion on the nucleate pool boiling process.The results show that rolling motion greatly influences the bubble behavior and void fraction owing to the differences between flow fields.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°,and by 11.84%,22.27%,and 21.81%as the rolling period increased from 1 s to 3 s.The void fraction decreased by 11.84%,48.82%,and 56.87%as the maximum rolling angle increased from 15°to 45°.The heat transfer coefficients of different cases are compared,and it is found that the effects of rolling motion on heat transfer coefficients can be ignored.
基金Project (No. 50334010) supported by the National Natural ScienceFoundation of China
文摘Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS×TEL) are obtained at 20 min.