It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion ...It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.展开更多
Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed t...Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.展开更多
A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is ill...A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is illustrated for smart car. A novel edge detection and trend prediction method is proposed for MCU processing unit for automatic guidance. A hardware-based binary proposal is discussed for guidance information detection with raster data. Keystone distortion correcting algorithm is also designed for MCU application and the performance of track type recognition is improved. Together with rollover preventing calculation, the proposed design is successfully applied to a 1∶10 scale model car.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51775269,U1964203,52072215)National Key R&D Program of China(Grant No.2020YFB1600303).
文摘It is very necessary for an intelligent heavy truck to have the ability to prevent rollover independently.However,it was rarely considered in intelligent vehicle motion planning.To improve rollover stability,a motion planning strategy with autonomous anti rollover ability for an intelligent heavy truck is put forward in this paper.Considering the influence of unsprung mass in the front axle and the rear axle and the body roll stiffness on vehicle rollover stability,a rollover dynamics model is built for the intelligent heavy truck.From the model,a novel rollover index is derived to evaluate vehicle rollover risk accurately,and a model predictive control algorithm is applicated to design the motion planning strategy for the intelligent heavy truck,which integrates the vehicle rollover stability,the artificial potential field for the obstacle avoidance,the path tracking and vehicle dynamics constrains.Then,the optimal path is obtained to meet the requirements that the intelligent heavy truck can avoid obstacles and drive stably without rollover.In addition,three typical scenarios are designed to numerically simulate the dynamic performance of the intelligent heavy truck.The results show that the proposed motion planning strategy can avoid collisions and improve vehicle rollover stability effectively even under the worst driving scenarios.
基金National Key R&D Program of China(Grant No.2020YFB1600303)National Natural Science Foundation of China(Grant Nos.U1964203,52072215)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956).
文摘Autonomous vehicles require safe motion planning in uncertain environments,which are largely caused by surrounding vehicles.In this paper,a driving environment uncertainty-aware motion planning framework is proposed to lower the risk of position uncertainty of surrounding vehicles with considering the risk of rollover.First,a 4-degree of freedom vehicle dynamics model,and a rollover risk index are introduced.Besides,the uncertainty of surrounding vehicles’position is processed and propagated based on the Extended Kalman Filter method.Then,the uncertainty potential field is established to handle the position uncertainty of autonomous vehicles.In addition,the model predictive controller is designed as the motion planning framework which accounts for the rollover risk,the position uncertainty of the surrounding vehicles,and vehicle dynamic constraints of autonomous vehicles.Furthermore,two edge cases,the cut-in scenario,and merging scenario are designed.Finally,the safety,effectiveness,and real-time performance of the proposed motion planning framework are demonstrated by employing a hardware-in-the-loop experiment bench.
文摘A micro controller unit (MCU) oriented image acquisition and automatic guidance system is proposed. Image rectification and guidance recognition are discussed. The relation between camera setting and sight view is illustrated for smart car. A novel edge detection and trend prediction method is proposed for MCU processing unit for automatic guidance. A hardware-based binary proposal is discussed for guidance information detection with raster data. Keystone distortion correcting algorithm is also designed for MCU application and the performance of track type recognition is improved. Together with rollover preventing calculation, the proposed design is successfully applied to a 1∶10 scale model car.