Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a co...Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.展开更多
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under th...In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.展开更多
To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 workin...To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 working face of the Hanzui mine is considered as an example for classifying the roof of the mining tunnel under the small kiln destruction zone,the effect of the goaf on the roadway is determined based on the radio tunnel penetration method,a mechanical model to determine the roof filling control mechanism was established,and the duct foaming system and roof filling process were designed.The results show that the scope and degree of influence of the goaf on the mining lane are large,but safe tunneling can be ensured through the use of a steel shed and advanced grouting techniques.When the roof conditions are not similar,materials with different filling heights and filling strengths can be used to control the roof filling of the roadway.By combining field experience and laboratory tests,it was determined that a high-foaming material with a water-cement ratio of 1:0.6,a suitable high-foaming additive,and a water volume ratio of 1:30 is cost-efficient for filling and meets the filling strength requirements.Finally,the reliability of the proposed technology was verified by field experiments,which provide a reference for filling operations in similar mines.展开更多
Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causin...Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.展开更多
For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by ...For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.展开更多
The effect of reinforcing roof, sides and floor corners to control floor heave of extraction opening was analyzed, It was proved by engineering practice and numerical simulation that reinforcing any part of surroundin...The effect of reinforcing roof, sides and floor corners to control floor heave of extraction opening was analyzed, It was proved by engineering practice and numerical simulation that reinforcing any part of surrounding rock have certainly control effect for floor heave, in the basis of this, the new way that roof, sides and floor corners were rein-forced to control floor heave was put forward. Contrasting control result of reinforcing floor with this, it is determined that reinforcing is more suitable to control floor heave of extrac-tion opening than reinforcing floor when advancing abutment pressure is in some range.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
基金the Qinglan Project,the National Key Basic Research Program of China (No.2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.51421003)
文摘Based on the analysis of the failure characteristics and backfilling effect of the compound roof at 1801 backfilling workface in Taiyuan coal mine, China, we propose a method of controlling the pre- subsidence of a compound roof by using pre-stressed bolts to improve the backfilling ratio of the work- face so as to maintain the global stability of the stope roof. In addition, PHASE simulation software was employed to analyze the influence law of pre-stressing force, length, and interval on roof subsidence at the workface. On the basis of the numerical simulation results, a model for calculating the pre-stressing force and length of the bolts, the interval between the bolts, as well as roof subsidence at the workface, was established by using SPSS regression analysis software. Moreover, the research results were applied successfully to the 1801 filling workface. According to the monitoring data of roof closure, it was found that the final subsidence value for the goal roof was 350 mm and the filling ratio at the workface was 86%, which could fully meet the demand for safety production at the workface. The safe and effective control of the stope roof was therefore realized, which achieves the goal of safe and efficient backfilling mining under a compound roof.
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
基金the National Natural Science Foundation of China (No. 51304208)the Science and Technology Research of the Ministry of Education of China
文摘In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.
基金the National Key Basic Research Program of China (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51474206 and 51774268)the Jiangsu Basic Research Program (No. BK20150051)
文摘To recover coal resources that have been damaged by traditional mining methods and ensure stability of the lower roadway in a small pit goaf,the goaf area must be filled and reinforced.In this research,the 1202 working face of the Hanzui mine is considered as an example for classifying the roof of the mining tunnel under the small kiln destruction zone,the effect of the goaf on the roadway is determined based on the radio tunnel penetration method,a mechanical model to determine the roof filling control mechanism was established,and the duct foaming system and roof filling process were designed.The results show that the scope and degree of influence of the goaf on the mining lane are large,but safe tunneling can be ensured through the use of a steel shed and advanced grouting techniques.When the roof conditions are not similar,materials with different filling heights and filling strengths can be used to control the roof filling of the roadway.By combining field experience and laboratory tests,it was determined that a high-foaming material with a water-cement ratio of 1:0.6,a suitable high-foaming additive,and a water volume ratio of 1:30 is cost-efficient for filling and meets the filling strength requirements.Finally,the reliability of the proposed technology was verified by field experiments,which provide a reference for filling operations in similar mines.
基金sponsored by the National Natural Science Foundation of China(No.50874021 )the Program for New Century Excellent Talents in University(No.NCET-08-0833)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0656) of the Ministry of Education of China.
文摘Caving of mine roofs from water inrush due to anomalous pressure is one of the major disasters and accidents that can occur in mines during production.Roof water inrush can trigger a wide range of roof collapse,causing major accidents from breaking roof supports while caving.These failures flood wells and do a great deal of damage to mines and endanger mine safety.Our objective is to analyze the anomalies of water inrush crushing the support at the #6301 working face in the Jisan Coal Mine of the Yanzhou Mining Group.Through information of water inrush to the roof,damage caused by tectonic movements,information on the damage caused by roof collapse and the theory about the distribution of pressure in mine abutments,we advice adjusting the length of the working face and the position of open-off cut relatively to the rich water area.In the case of anomalous roof pressure we should develop a state equation to estimate preventive measures with"transferring rock beam"theory.Simultaneously, we improve the capacity of drainage equipment and ensured adequate water retention at the storehouse. These are all major technologies to ensure the control and prevention against accidents caused by anomalous water inrush in roofs,thus ensuring safety in the production process of a coal mine.
文摘For decades, pillar recovery accounted for a quarter of all roof fall fatalities in underground coal mines.Studies showed that a miner on a pillar recovery section was at least three times more likely to be killed by a roof fall than other coal miners. Since 2007, however, there has been just one fatal roof fall on a pillar line. This paper describes the process that resulted in this historic achievement. It covers both the key research findings and the ways in which those insights, beginning in the early 2000 s, were implemented in mining practice. One key finding was that safe pillar recovery requires both global and local stability.Global stability is addressed primarily through proper pillar design, and became a major focus after the2007 Crandall Canyon mine disaster. But the most significant improvements resulted from detailed studies that showed that local stability, defined as roof control in the immediate work area, could be achieved with three interventions:(1) leaving an engineered final stump, rather than extracting the entire pillar,(2) enhancing roof bolt support, particularly in intersections, and(3) increasing the use of mobile roof supports(MRS). A final component was an emphasis on better management of pillar recovery operations.This included a focus on worker positioning, as well as on the pillar and lift sequences, MRS operations,and hazard identification. As retreat mines have incorporated these elements into their roof control plans,it has become clear that pillar recovery is not ‘‘inherently unsafe." The paper concludes with a discussion of the challenges that remain, including the problems of rib falls and coal bursts.
基金Supported by the Natural Science Foundation Project of Hunan(01JJY3020)
文摘The effect of reinforcing roof, sides and floor corners to control floor heave of extraction opening was analyzed, It was proved by engineering practice and numerical simulation that reinforcing any part of surrounding rock have certainly control effect for floor heave, in the basis of this, the new way that roof, sides and floor corners were rein-forced to control floor heave was put forward. Contrasting control result of reinforcing floor with this, it is determined that reinforcing is more suitable to control floor heave of extrac-tion opening than reinforcing floor when advancing abutment pressure is in some range.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.