For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti...For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.展开更多
The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special t...The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special test of three-type corner friction and squeez- ing of real rock specimens, and physical simulation test on the roof key blocks of roof structure as well as the finite element calcula- tion of the corner stress distribution and failure mechanism, the characteristics of friction and squeezing of the roof key blocks comer are revealed. It is found that the friction angle of the roof key blocks corner is the residual friction angle, and the frictional angle of the roof key blocks is 22-32° (average 27°), so the friction coefficient is determined as 0.5. It also found the squeezing strength is less than the uniaxial strength, and the squeezing coefficient of the roof blocks corner is determined as 0.4. Based on the results, the ground control theory can be updated from qualitative analysis to quantitative analysis.展开更多
This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models ...This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models are differ from classic theory, it establishes the new roof control theory of instability structure roof, especially in shallow seam. Based on the new roof structure theory, the support working state of "given sliding load" is put forward, and the factor of load transmitting is introduced to determine the load on roof structure. Therefore, the proper and accurate calculating methods of support resistance are established. Based on this, the dynamic structure theory in shallow seam could be predicted.展开更多
This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work...This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work,two existing multi-sports gymnasiums are taken as a reference,but with ASTM(American Society for Testing and Materials)A36 steel roof structure.The proposed cover system uses cables and light gauge profiles,in commercial stainless steel,which reduces the weight and of course the final price of the roof structure.A structure that presents technical feasibility is obtained and analyzed by checking its behavior with respect to the efforts and displacements generated by the combinations of the acting loads,following the safety recommendations of the applicable standard.It is verified that using the stainless steel structure proposed in this work would cost 42%of the reference structure if this were in AISI(American Iron and Steel Institute)304 stainless steel.And this cost tends to be minimized due to greater durability and consequent reduction in maintenance costs of this type of steel.展开更多
Based on the investigation and statistics of logs of 211 bole holes and strata data from 79 roadways in 13 coal mines located in Xishan, Jincheng, Lu’an, Fenxi, and Huozhou in China, the roadways’ roof structures we...Based on the investigation and statistics of logs of 211 bole holes and strata data from 79 roadways in 13 coal mines located in Xishan, Jincheng, Lu’an, Fenxi, and Huozhou in China, the roadways’ roof structures were classified as multi-thin-layer, thin-thick combined layer, integrated thick layer, thick-coal layer, and cracked layer according to the geometric features and spatial strength distribution of surrounding rock. Then eight sub-categories were defined as different situations. And seven simulation modeling tests were carried out. The strata structures of these models were different from each other. At last, the relationship between roof structure and its failure pattern was discussed.展开更多
The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with ...The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with field observations to validate the numerical model, based on which a parametric study was performed to provide insight into the failure process and damage patterns of steel grids. The results suggest that the grid damage is strongly related to roofsubstructure interactions. These include not only the substructure's amplification of the vibration, but the uncoordinated displacement of the substructure's columns which support the grid also play an equally important role. In particular, the latter effect may significantly alter the internal force distribution in the steel grid and lead to unexpected buckling of members that are proportioned as tension-only members. While such interactions are generally not accounted for in the design practice for grid structures in China, similar seismic damage may be expected for other existing grid roofs in future earthquakes. As is also demonstrated in this study, seismic isolation of the roof is a promising solution to protect grid roof structures by mitigating the detrimental effects of roof-substructure interactions.展开更多
Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the pr...Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the present case of a small span innovative structural solution. The contribution of this text to the structural engineering community lies in the increased interest in building simple cable roof structures. Since its completion in September 1996, this small cable roof structure has been recognized as an interesting architectural and structural example. The text describes aspects of the design and construction of a small cable roof that was designed as a roof for an open-air theater stage for the city of Sao Jose do Rio Pardo, Sao Paulo, Brazil. A cable network, in the shape of a hyperbolic paraboloid surface, is anchored in a reinforced concrete edge ring. The projection of the ring’s axis onto the ground plane is an ellipse. Workers with specialized training were employed in the various stages of the construction, which was completed in September 1996.展开更多
Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on...Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.展开更多
The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significa...The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.展开更多
Chinese solar greenhouses(CSGs)are important agricultural production facilities.Under non-artificial heating conditions,solar radiation is the only CSGs energy source.It is highly important to optimally obtain solar e...Chinese solar greenhouses(CSGs)are important agricultural production facilities.Under non-artificial heating conditions,solar radiation is the only CSGs energy source.It is highly important to optimally obtain solar energy in greenhouse construction and production.In this study,a solar radiation model for solar greenhouses was adopted to explore the quantities of solar radiation in greenhouses considering different front roof forms and angles.Herein,the solar radiation amounts corresponding to five roof forms,namely,double-section arc,parabolic,oval,arc,and linear roofs,are compared and analyzed during the four solar periods(beginning of spring,vernal equinox,beginning of winter,and winter solstice).It was found that the solar radiation of oval roof greenhouses on the ground was the largest and was 4.44%-23.68%higher than that of parabolic roofs.In addition,the cumulative sum of light on the linear roof greenhouse wall is also the largest and was 6.02%to 12.08%higher than the parabolic roof greenhouse in the four solar terms.Moreover,the solar radiation in CSGs was compared with front roof angles of 25°,30°,and 35°.It was observed that the solar radiation amount gradually increases with increasing angles.Notably,the variation at an angle of 35°influences the solar radiation of the paraboloidal CSGs ground and elliptical CSGs north wall to the greatest extent,which increased by 8.23%and 12.74%,respectively.This study confirms the role of front roof form and inclination angle in enhancing the greenhouse solar radiation level.展开更多
Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of ...Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determ...During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.展开更多
Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failur...Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failure and underground pressure induced by coal mining in coal roof with different rock mass structures are analyzed. The test results indicate that the distances of first and periodic weighting of main roof and the height of caving and fracture zone decrease with the increment of fractures in roof rock mass. From whole to blocky and heavily fractured structures, abutment pressure ahead of working face reduces and the peak value of abutment pressure migrates to inside of roof rock mass.展开更多
On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major fai...On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>展开更多
The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the...The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.展开更多
This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different ...This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different heights and different configurations are simulated with different load combinations. The responses of the simulated structural models with flat and shell roofs are studied and analyzed. These responses draw recommendations and guidelines for preliminary design of structurally efficient and reliable tall buildings with shell roof in earthquake zones. Five different earthquake zone factors (Z1 - Z5) along with the five different soil profiles (S1 - S5) are selected in this study. The non-linear dynamic response of buildings was obtained using three simulated models of buildings;square/rectangular, circular, and tube-shaped building. Total of 12 building models, four under each category, are analyzed using the finite element software (STAAD pro) subjected to the gravity as well as earthquake loading defined by UBC and IBC codes. Each building model is analyzed with two different story heights;which are 120 meters for 30 stories and 72 meters for 18 stories respectively. Horizontal and vertical displacement comparison is made among the flat roof and shell roof building for 32 and 18 stories building satisfying the ACI code of design requirement and drift index of 1/500 (0.002). The results showed that the drift index value for all the studied buildings is close to 0.002. All the maximum horizontal and vertical deflections occur under the earthquake zone-5 (0.40 gravitational acceleration) with soil profile-5 (Soft soil). The shell roof slab with less thickness than the flat roof slab did satisfy the horizontal and vertical deflection limits, therefore, it is more economical than the flat roof slab.展开更多
基金Project(51674265) supported by the National Natural Science Foundation of ChinaProjects(2018YFC0603705,2016YFC0600901) supported by the State Key Research Development Program of ChinaProject supported by the Yueqi Outstanding Scholar Award Program of China University of Mining&Technology,Beijing,China。
文摘For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.
基金This research was financially supported by the National Natural Science Foundation of China (No.50104009) and the Key Scienceand Technology Research Subject of the Ministry of Education of China (No.204183).
文摘The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special test of three-type corner friction and squeez- ing of real rock specimens, and physical simulation test on the roof key blocks of roof structure as well as the finite element calcula- tion of the corner stress distribution and failure mechanism, the characteristics of friction and squeezing of the roof key blocks comer are revealed. It is found that the friction angle of the roof key blocks corner is the residual friction angle, and the frictional angle of the roof key blocks is 22-32° (average 27°), so the friction coefficient is determined as 0.5. It also found the squeezing strength is less than the uniaxial strength, and the squeezing coefficient of the roof blocks corner is determined as 0.4. Based on the results, the ground control theory can be updated from qualitative analysis to quantitative analysis.
文摘This paper presents the structure models founded in shallow seam, the roof asymmetry arch with three articulations in roof first weighting and the step voussoir beam in roof periodic weighting. These structure models are differ from classic theory, it establishes the new roof control theory of instability structure roof, especially in shallow seam. Based on the new roof structure theory, the support working state of "given sliding load" is put forward, and the factor of load transmitting is introduced to determine the load on roof structure. Therefore, the proper and accurate calculating methods of support resistance are established. Based on this, the dynamic structure theory in shallow seam could be predicted.
文摘This work proposed an architectural alternative project of a stainless steel roof structure that uses roof tiles also in stainless steel with emphasis on roofs for multi-sport gymnasiums.In the development of the work,two existing multi-sports gymnasiums are taken as a reference,but with ASTM(American Society for Testing and Materials)A36 steel roof structure.The proposed cover system uses cables and light gauge profiles,in commercial stainless steel,which reduces the weight and of course the final price of the roof structure.A structure that presents technical feasibility is obtained and analyzed by checking its behavior with respect to the efforts and displacements generated by the combinations of the acting loads,following the safety recommendations of the applicable standard.It is verified that using the stainless steel structure proposed in this work would cost 42%of the reference structure if this were in AISI(American Iron and Steel Institute)304 stainless steel.And this cost tends to be minimized due to greater durability and consequent reduction in maintenance costs of this type of steel.
基金Youth Natural Science Foundation of Shanxi prov.( 2 0 0 2 10 2 1)
文摘Based on the investigation and statistics of logs of 211 bole holes and strata data from 79 roadways in 13 coal mines located in Xishan, Jincheng, Lu’an, Fenxi, and Huozhou in China, the roadways’ roof structures were classified as multi-thin-layer, thin-thick combined layer, integrated thick layer, thick-coal layer, and cracked layer according to the geometric features and spatial strength distribution of surrounding rock. Then eight sub-categories were defined as different situations. And seven simulation modeling tests were carried out. The strata structures of these models were different from each other. At last, the relationship between roof structure and its failure pattern was discussed.
基金National Science & Technology Support Program during the Twelfth Five-year Plan Period of China under Grant No.2015BAK17B02,2015BAK17B03the Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2014A01+2 种基金the Program for Innovative Research Team in China Earthquake Administrationthe International Science & Technology Cooperation Program of China under Grant No.2014DFA70950a general program of National Natural Science Foundation of China under Grant No.51578515
文摘The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with field observations to validate the numerical model, based on which a parametric study was performed to provide insight into the failure process and damage patterns of steel grids. The results suggest that the grid damage is strongly related to roofsubstructure interactions. These include not only the substructure's amplification of the vibration, but the uncoordinated displacement of the substructure's columns which support the grid also play an equally important role. In particular, the latter effect may significantly alter the internal force distribution in the steel grid and lead to unexpected buckling of members that are proportioned as tension-only members. While such interactions are generally not accounted for in the design practice for grid structures in China, similar seismic damage may be expected for other existing grid roofs in future earthquakes. As is also demonstrated in this study, seismic isolation of the roof is a promising solution to protect grid roof structures by mitigating the detrimental effects of roof-substructure interactions.
文摘Cable roof structures?have?only become widespread in large span structures in the latter part of the twentieth century. However,?they?still represent a relatively new form of roof construction, especially as in the present case of a small span innovative structural solution. The contribution of this text to the structural engineering community lies in the increased interest in building simple cable roof structures. Since its completion in September 1996, this small cable roof structure has been recognized as an interesting architectural and structural example. The text describes aspects of the design and construction of a small cable roof that was designed as a roof for an open-air theater stage for the city of Sao Jose do Rio Pardo, Sao Paulo, Brazil. A cable network, in the shape of a hyperbolic paraboloid surface, is anchored in a reinforced concrete edge ring. The projection of the ring’s axis onto the ground plane is an ellipse. Workers with specialized training were employed in the various stages of the construction, which was completed in September 1996.
基金Supported by the National Natural Science Foundation of China (No. 50178035)
文摘Wind loads are key considerations in the structural design of large-span structures since wind loads can be more important than earthquake loads, especially for large flexible structures. The analysis of wind loads on large span roof structures (LSRS) requires large amounts of calculations. Due to the com- bined effects of horizontal and vertical winds, the wind-induced vibrations of LSRS are analyzed in this pa- per with the frequency domain method as the first application of method for the analysis of the wind re- sponse of LSRS. A program is developed to analyze the wind-induced vibrations due to a combination of wind vibration modes. The program, which predicts the wind vibration coefficient and the wind pressure act- ing on the LSRS, interfaces with other finite element software to facilitate analysis of wind loads in the de- sign of LSRS. The effectiveness and accuracy of the frequency domain method have been verified by nu- merical analyses of practical projects.
基金Project(51174192)supported by the National Natural Science Foundation of ChinaProject(BRA2010024)supported by "333" Training Foundation of Jiangsu Province,China+2 种基金Projects(2011QNB03,2014ZDPY21,2014QNB30)supported by the Fundamental Research Funds for the Central Universities,ChinaProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(2015M581896)supported by China Postdoctoral Science Foundation
文摘The mining space of large mining height coal face is large,the range of movement and caving of rock strata is large and the stability of supports at coal face is low and damage rate of supports is high,which significantly affects the safe and efficient production of coal mines.By similar simulation experiment and theoretical analysis,the mode of fractured roofing structure of large mining height coal face and the method of determination of reasonable support resistance of the support was evaluated.Analysis shows that the structural mode of "combined cantilever beam – non-hinged roofing – hinged roofing" of the large mining height coal face appears at the roofing of large mining height coal face.The supporting factor of caved gangue at the gob is introduced,the calculating equations of the fractured step distance of roofing were derived and conventional calculating method of caved height of roofing was corrected and the method of determination of the length and height of each structural area of the roofing was provided.With reference to the excavating conditions at Jinhuagong coal mine in Datong minefield,the dimensions of structural areas of the roofing of the coal face were determined and analyzed,and reasonable support resistance of the height coal face was acquired.By selecting Model ZZ13000/28/60 support and with procedures of advanced pre-cracking blasting,the safe production of large mining height coal face was assured.
基金This work was financially supported by the Natural Science Youth Project of the Autonomous Region University Scientific Research Program(Grant No.XJEDU2019Y017)the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(Grant No.2021D01A83).
文摘Chinese solar greenhouses(CSGs)are important agricultural production facilities.Under non-artificial heating conditions,solar radiation is the only CSGs energy source.It is highly important to optimally obtain solar energy in greenhouse construction and production.In this study,a solar radiation model for solar greenhouses was adopted to explore the quantities of solar radiation in greenhouses considering different front roof forms and angles.Herein,the solar radiation amounts corresponding to five roof forms,namely,double-section arc,parabolic,oval,arc,and linear roofs,are compared and analyzed during the four solar periods(beginning of spring,vernal equinox,beginning of winter,and winter solstice).It was found that the solar radiation of oval roof greenhouses on the ground was the largest and was 4.44%-23.68%higher than that of parabolic roofs.In addition,the cumulative sum of light on the linear roof greenhouse wall is also the largest and was 6.02%to 12.08%higher than the parabolic roof greenhouse in the four solar terms.Moreover,the solar radiation in CSGs was compared with front roof angles of 25°,30°,and 35°.It was observed that the solar radiation amount gradually increases with increasing angles.Notably,the variation at an angle of 35°influences the solar radiation of the paraboloidal CSGs ground and elliptical CSGs north wall to the greatest extent,which increased by 8.23%and 12.74%,respectively.This study confirms the role of front roof form and inclination angle in enhancing the greenhouse solar radiation level.
文摘Numerical models defined by means of a suitably assumed set of parameters make it possible to select the optimal structural solution for the given or assumed conditions. The paper presents examples of applications of numerical models defined in the programming language Formian during the shaping processes of various types of spatial structural systems designed for roof covers. These types of numerical models can be relatively easily adapted to the requirements, which can be frequently changed during the investment process, what makes possible a considerable reducing of costs and time of design of the space structures having even the very complex shapes. The advantageous features of application of numerical models defined in Formian are presented in models determined for selected forms of the roof covers designed also by means of a simple type of a space frame. In the paper, there are some presented visualizations made on bases of these models defining mainly for structural systems developed recently by the author for certain types of the dome covers. The proposed structural systems are built by means of the successive spatial hoops or they are created as unique forms of the geodesic dome structures.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘During the underground mining of coal resources,overlying rocks on the roof of excavated tunnels will be destroyed due to ground pressure,and as a result,part of them will break and fall into the tunnels.How to determine the distribution of fractured areas and fissures presents a major problem for preserving the overlying aquifer.
基金Supported by the National Natural Science Foundation of China(5 97740 0 3 and 49872 0 5 3 )
文摘Based on the developing degree of structure planes in coal roof, whole, blocky and heavily fractured structure models are built up. Through simulation test of similar materials, the distribution of deformation, failure and underground pressure induced by coal mining in coal roof with different rock mass structures are analyzed. The test results indicate that the distances of first and periodic weighting of main roof and the height of caving and fracture zone decrease with the increment of fractures in roof rock mass. From whole to blocky and heavily fractured structures, abutment pressure ahead of working face reduces and the peak value of abutment pressure migrates to inside of roof rock mass.
文摘On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>
基金Financial supports for this work, provided by the New Century Excellent Talents in University (No.NCET-05-0480)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety of CUMT (No.09KF06)the Scientific Research Fund of CUMT (No.OA090239)
文摘The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft-hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show thatChe deformation of the structure of the soft-hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effec- tively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.
文摘This paper studies and analyzes tall buildings with shell and flat roof responses designed for gravity and earthquake loads in different zones having different soil profiles. These tall buildings having two different heights and different configurations are simulated with different load combinations. The responses of the simulated structural models with flat and shell roofs are studied and analyzed. These responses draw recommendations and guidelines for preliminary design of structurally efficient and reliable tall buildings with shell roof in earthquake zones. Five different earthquake zone factors (Z1 - Z5) along with the five different soil profiles (S1 - S5) are selected in this study. The non-linear dynamic response of buildings was obtained using three simulated models of buildings;square/rectangular, circular, and tube-shaped building. Total of 12 building models, four under each category, are analyzed using the finite element software (STAAD pro) subjected to the gravity as well as earthquake loading defined by UBC and IBC codes. Each building model is analyzed with two different story heights;which are 120 meters for 30 stories and 72 meters for 18 stories respectively. Horizontal and vertical displacement comparison is made among the flat roof and shell roof building for 32 and 18 stories building satisfying the ACI code of design requirement and drift index of 1/500 (0.002). The results showed that the drift index value for all the studied buildings is close to 0.002. All the maximum horizontal and vertical deflections occur under the earthquake zone-5 (0.40 gravitational acceleration) with soil profile-5 (Soft soil). The shell roof slab with less thickness than the flat roof slab did satisfy the horizontal and vertical deflection limits, therefore, it is more economical than the flat roof slab.