Rice is often grown as multiple seasons in one year,alternating between flooded and upland systems.A major constraint,introduced from the flooded system,is a plough pan that may decrease rooting depth and productivity...Rice is often grown as multiple seasons in one year,alternating between flooded and upland systems.A major constraint,introduced from the flooded system,is a plough pan that may decrease rooting depth and productivity of follow-on upland rice.Roots penetrating the plough pan under flooded rice system can leave a legacy of weaker root growth pathways.Deeper rooting rice cultivars could have a bigger impact,but no direct evidence is available.To explore whether a deep rather than a shallow rooting rice cultivar grown in a flooded cropping cycle benefited deeper root growth of follow-on rice in an upland,reduced tillage cropping cycle,a simulated flooded paddy in greenhouse was planted with deep(Black Gora) and shallow(IR64) rooting cultivars and a plant-free control.Artificial plough pans were made in between the topsoil and subsoil to form different treatments with no plough pan(0.35 MPa),soft plough pan(1.03 MPa) and hard plough pan(1.70 MPa).After harvest of this ‘first season’ rice,the soil was drained and undisturbed to simulate zero-tillage upland and planted rice cultivar BRRI Dhan 28.The overall root length density(RLD),root surface area,the numbers of root tips and branching of BRRI Dhan 28 did not vary between plough pan and no plough pan treatments.Compared with the shallow rooting rice genotype,the deep rooting rice genotype as ‘first season’ crop produced 19% greater RLD,34% greater surface area and 29% more branching of BRRI Dhan 28 in the subsoil.In the topsoil,however,BRRI Dhan 28 had 28% greater RLD,35% greater surface area and 43% more branching for the shallow rather than deep rooting genotype planted in the ‘first season’.The results suggested that rice cultivar selection for a paddy cycle affects root growth of a follow-on rice crop grown under no-till,with benefits to subsoil access from deep rooting cultivars and topsoil proliferation for shallow rooting cultivars.展开更多
The unreasonable nitrogen(N)supply and low productivity are the main factors restricting the sustainable development of processing tomatoes.In addition,the mechanism by which the N application strategy affects root gr...The unreasonable nitrogen(N)supply and low productivity are the main factors restricting the sustainable development of processing tomatoes.In addition,the mechanism by which the N application strategy affects root growth and nitrate distributions in processing tomatoes remains unclear.In this study,we applied four N application levels to a field(including 0(N0),200(N200),300(N300),and 400(N400)kg/hm^(2))based on the critical N absorption ratio at each growth stage(planting stage to flowering stage:22%;fruit setting stage:24%;red ripening stage:45%;and maturity stage:9%).The results indicated that N300 treatment significantly improved the aboveground dry matter(DM),yield,N uptake,and nitrogen use efficiency(NUE),while N400 treatment increased nitrate nitrogen(NO_(3)^(-)-N)residue in the 20–60 cm soil layer.Temporal variations of total root dry weight(TRDW)and total root length(TRL)showed a single-peak curve.Overall,N300 treatment improved the secondary root parameter of TRDW,while N400 treatment improved the secondary root parameter of TRL.The grey correlation coefficients indicated that root dry weight density(RDWD)in the surface soil(0–20 cm)had the strongest relationship with yield,whereas root length density(RLD)in the middle soil(20–40 cm)had a strong relationship with yield.The path model indicated that N uptake is a crucial factor affecting aboveground DM,TRDW,and yield.The above results indicate that N application levels based on critical N absorption improve the production of processing tomatoes by regulating N uptake and root distribution.Furthermore,the results of this study provide a theoretical basis for precise N management.展开更多
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa...Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.展开更多
[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to stud...[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.展开更多
Lateral root is primary organ for plant to explore and utilize soil nutrient efficiently. The development of lateral roots (LR) is controlled by both genetic factors and nutrient status in environment. To investigate ...Lateral root is primary organ for plant to explore and utilize soil nutrient efficiently. The development of lateral roots (LR) is controlled by both genetic factors and nutrient status in environment. To investigate the effects of nitrate (NO3-) on rice lateral root growth and nitrogen (N) uptake efficiency under upland condition, three treatments, including root-split culture and whole plant culture in N sufficient and deficient conditions, were used in a vermiculite culture experiment. Root-split treatment showed that the growth of lateral roots was stimulated by localized nitrate supply. However, in whole plant culture, elongation of lateral roots was induced by NO3- deficiency. The effects of NO3- on rice lateral root growth were genotype-dependent. Similar N concentration, soluble sugar concentration and N content in shoot were observed in both root-split treatment and whole plant culture under NO3- sufficient condition, suggesting that the nitrogen requirement for rice normal growth could be satisfied with only half of roots supplied with NO3-. In the root-split treatment, N uptake was positively correlated with the average of lateral root length (ALRL) in NO3--supplied side, suggesting that the ALRL is important for rice root N uptake in the environment where the nitrogen nutrient is limiting factor. No significant correlation was observed between N uptake and ALRL in whole plant culture under N sufficient condition, which implies that the length of lateral roots may not be the main factor to determine tire rice root N uptake in nutrient-rich zone. Morphological and metabolic evidence in this study provided some prospects for genetic improvement of root system characters to improve the efficiency of nutrient absorption in rice.展开更多
To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adv...To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adventitious root length, adventitious root number, total root dry weight and ratio of root to shoot were detected using molecular map including 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on a recombinant inbred line (RIL) population with 150 lines derived from a cross between an lowland rice IR1552 and an upland rice Azucena in both solution culture (lowland condition) and paper culture (upland condition). Six QTLs and twenty-two pairs of epistatic loci for the four parameters were detected. Three QTLs detected for maximum adventitious root length in solution culture (MARLS), total root dry weight in both solution culture and paper culture (TRDWS and TRDWP) accounted for about 20%, 23% and 13% of the total variations, respectively. Only epistatic loci were found for maximum adventitious root length and adventitious root number in paper culture (MARLP and ARNP), and for ratio of root to shoot in both paper and solution culture (R/SP and R/SS), which accounted for about 12%-61% of the total variations in the parameters, respectively. No identical QTL or epistatic loci were found for the parameters in both solution and paper culture. The results indicate that there is a different genetic system responsible to root growth of rice seedlings under lowland and upland conditions and epistasis might be the major genetic basis for MARLP, ARNP, R/SP and R/SS.展开更多
Rooting depth and root and shoot biomass were measured for seedlings of 20 species in both watered and unwatered sand columns. The species were from habitats of widely varying moisture status, ranging from marsh to de...Rooting depth and root and shoot biomass were measured for seedlings of 20 species in both watered and unwatered sand columns. The species were from habitats of widely varying moisture status, ranging from marsh to desert. Moisture status of the species' habitats was quantified as Ellenberg moisture number. Seedlings were allowed to grow in moist sand for 21 days and were then exposed to the treatments (watered and unwatered) for a further 21 days. Rooting depth of control plants was not correlated with Ellenberg number. Root depth of plants from dry habitats tended to increase in drying sand, while roots of plants from wet habitats decreased in depth. Plasticity of rooting depth (depth in unwatered / depth in watered sand) was significantly correlated with Ellenberg number ( r 2 = 0.56). Plasticity of shoot/root ratio was also correlated with Ellenberg number, but the relationship was weaker than for rooting depth plasticity. Species that showed the greatest plasticity in rooting depth also showed the greatest ability to sustain shoot growth in unwatered sand. There was some evidence that growth of plants from very dry habitats was reduced in the watered treatment. Results of this study suggest that a major, although not the only, adaptation of plants of dry habitats is the ability of their seedlings to exploit deeply buried water resources.展开更多
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on...Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.展开更多
Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria anana...Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.展开更多
MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division proce...MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transfor- mants have more nuclei and higher anenpioid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role forAtMYB59 in cell cycle regulation and plant root growth.展开更多
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that ...Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.展开更多
Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ...Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ern Xinjiang, China were studied in 2009 and 2010. The results showed that the root systems of the three halo- phytes were of the taproot type, vertically distributed in the 90-cm soil profile, and were deepest in late July. Their taproots reached maximum depth rapidly, early in the growth period, but with rare lateral roots. They were then dug out in an orderly way, from bottom to top, exhibiting vertical development first and then horizontal development. The distribution of specific root length, which reflects the characteristics of the feeder root, was gradually increased from top to bottom, whereas root weight displayed an opposite distribution pattern. The root length distribution of the three halophytes was concentrated (62% to 76%) in the middle soil profile (20-60 cm), with less distribution in the surface (0-20 cm) and bottom (60-90 cm) soil profiles. The results indicated that the roots of the three annual halophytes grew rapidly into the deeper soil layer after germination, which ensured the plant survival and uptake of water and nutrition, and thus built up a strong tolerance to an arid, high-salt environment.展开更多
Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments...Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus(P) application at different soil layers on root growth, grain yield, and water-use efficiency(WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive(Xiaoyan 22, XY22) and one drought-tolerant(Changhan 58, CH58). The four P treatments were no P(control, CK), surface P(SP), deep P(DP), and deep-band P application(DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments(DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight(RW) and root length(RL) in deep soil layer(30-100 cm) were closely positively correlated with grain yield and WUE of CH58(but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars(r=0.94, P〈0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars.展开更多
Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great ...Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity.展开更多
Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- t...Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.展开更多
Water relation parameters of bare-root seedlings of Chinese fir (Cunninghamia lanceolata Hook.) and Masson pine (Pinus massoniana Lamb.) were measured and changes of root growth potential as well as field survival rat...Water relation parameters of bare-root seedlings of Chinese fir (Cunninghamia lanceolata Hook.) and Masson pine (Pinus massoniana Lamb.) were measured and changes of root growth potential as well as field survival rate of both species were studied after the bare-root seedlings were exposed in a sunny field condition. The results showed that Masson pine had a lower osmotic potential (-2.07Mpa) at turgor loss point and at full turgor (-1.29Mpa), compared with Chinese fir (-1.80Mpa and -1.08Mpa respectively). The parameter Vp/V0 (63.27%) of Masson pine was higher than that of Chinese fir (58.03%). This means that Masson pine has a stronger ability to tolerate desiccation, compared to Chinese fir according to analysis of above water relation parameters. Root growth potential and field survival rate decreased with prolonging duration of exposure. The field survival rate of both species was reduced to less than 40% after the seedling being exposed only two hours. Water poten-tials of 1.60 Mpa and -1.70 Mpa were suggested to be critical values for Chinese fir and Masson pine respectively in successful reforestation.展开更多
Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation o...Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation of the root-growing space greatly affected root growth, decreased total root-absorbing area and TTC-reductive amounts. However, it obviously increased the root active-absorbing area, specific absorbing area(absorbing area per gram root weight)and specific active-absorbing area(actively absorbing area per gram root weight)in addition to promoting the TTC-reductive intensity. This clearly showed that plants were not passively tolerant to stress, but actively regulated their physiological metabolic processes, and strengthened their absorbing ability to increase water and nutrient uptake so that root injury by the environmental stress could be reduced. Supply of water and N stimulated root growth, increased root-absorbing area and activity. promoted nutrient uptake, and therefore increased crop yield and decreased the detrimental effects resulting from the limitation of roots-growing space.展开更多
Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormo...Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormone.Despite its importance,functions of PSK-αin M.truncatula growth remains unknown.In this study,we identified five genes to encode PSK-αprecursors in M.truncatula.All of these precursors possess conserved PSK-αsignature motif.Expression pattern analysis of these MtPSK genes revealed that each gene was expressed in a tissue-specific or ubiquitous pattern and three of them were remarkably expressed in root.Treatment of M.truncatula seedlings with synthetic PSK-αpeptide significantly promoted root elongation.In addition,expression analysis of downstream genes by RNA-seq and qRT-PCR assays suggested that PSK-αsignaling might regulate cell wall structure via PMEI-PME module to promote root cell growth.Taken together,our results shed light on the mechanism by which PSK-αpromotes root growth in M.truncatula,providing a new resource for improvement of root growth in agriculture.展开更多
It was hypothesized that wood chips can serve as a mulch to improve the growth of young trees by facilitating the development of their root systems, inhibiting weed germination, and suppressing weed growth. The presen...It was hypothesized that wood chips can serve as a mulch to improve the growth of young trees by facilitating the development of their root systems, inhibiting weed germination, and suppressing weed growth. The present study was carried out in Ghorogh Nursery, Golestan Northern Iran, in order to investigate the impact of wood chips applica- tion on root growth of oak (Quercus castaneifolia) seedlings and control of weed. A three centimeter wood chip layer was used on the soil surface as the mulch treatment with bare soil as the control. The number of new roots, the length of exciting roots and the density of weeds were meas- ured after 5 and 12 weeks. Results showed that wood chip application had significant positive effect on the length of excising roots after 5 and 12 weeks compared with control seedlings. Also, weeds were reduced to near zero levels in treated plot. Our findings suggested that wood chip layer on the soil surface in the nursery can conserve soil moisture and prevent nutrient leaching from the rooting zone as well as diminish weed growth which consequently lead to production of high quality seedling.展开更多
The root morphology of erect type peanut in deep soil was studied in this paper. In the experiment, erect type peanut showed as most as five-order lateral roots with 13 227 pieces of lateral roots. At the seedling sta...The root morphology of erect type peanut in deep soil was studied in this paper. In the experiment, erect type peanut showed as most as five-order lateral roots with 13 227 pieces of lateral roots. At the seedling stage, the root system of erect type peanut was handstand cone-typed with lateral roots at various orders distributed around the taproot, and among the roots, the taproot was longest. During the late seedling stage to mature stage, the upper part of the root system of erect type peanut was blunt cone-typed, the middle part was three-dimensional network typed, while the lower part was cyUnder-like. The longest first-order lateral root was the longest root. At the mature stage, the taproot was not always the deepest root.展开更多
基金funded by the Commonwealth Scholarship Commission in the UK。
文摘Rice is often grown as multiple seasons in one year,alternating between flooded and upland systems.A major constraint,introduced from the flooded system,is a plough pan that may decrease rooting depth and productivity of follow-on upland rice.Roots penetrating the plough pan under flooded rice system can leave a legacy of weaker root growth pathways.Deeper rooting rice cultivars could have a bigger impact,but no direct evidence is available.To explore whether a deep rather than a shallow rooting rice cultivar grown in a flooded cropping cycle benefited deeper root growth of follow-on rice in an upland,reduced tillage cropping cycle,a simulated flooded paddy in greenhouse was planted with deep(Black Gora) and shallow(IR64) rooting cultivars and a plant-free control.Artificial plough pans were made in between the topsoil and subsoil to form different treatments with no plough pan(0.35 MPa),soft plough pan(1.03 MPa) and hard plough pan(1.70 MPa).After harvest of this ‘first season’ rice,the soil was drained and undisturbed to simulate zero-tillage upland and planted rice cultivar BRRI Dhan 28.The overall root length density(RLD),root surface area,the numbers of root tips and branching of BRRI Dhan 28 did not vary between plough pan and no plough pan treatments.Compared with the shallow rooting rice genotype,the deep rooting rice genotype as ‘first season’ crop produced 19% greater RLD,34% greater surface area and 29% more branching of BRRI Dhan 28 in the subsoil.In the topsoil,however,BRRI Dhan 28 had 28% greater RLD,35% greater surface area and 43% more branching for the shallow rather than deep rooting genotype planted in the ‘first season’.The results suggested that rice cultivar selection for a paddy cycle affects root growth of a follow-on rice crop grown under no-till,with benefits to subsoil access from deep rooting cultivars and topsoil proliferation for shallow rooting cultivars.
基金supported by the National Natural Science Foundation of China (42077011).
文摘The unreasonable nitrogen(N)supply and low productivity are the main factors restricting the sustainable development of processing tomatoes.In addition,the mechanism by which the N application strategy affects root growth and nitrate distributions in processing tomatoes remains unclear.In this study,we applied four N application levels to a field(including 0(N0),200(N200),300(N300),and 400(N400)kg/hm^(2))based on the critical N absorption ratio at each growth stage(planting stage to flowering stage:22%;fruit setting stage:24%;red ripening stage:45%;and maturity stage:9%).The results indicated that N300 treatment significantly improved the aboveground dry matter(DM),yield,N uptake,and nitrogen use efficiency(NUE),while N400 treatment increased nitrate nitrogen(NO_(3)^(-)-N)residue in the 20–60 cm soil layer.Temporal variations of total root dry weight(TRDW)and total root length(TRL)showed a single-peak curve.Overall,N300 treatment improved the secondary root parameter of TRDW,while N400 treatment improved the secondary root parameter of TRL.The grey correlation coefficients indicated that root dry weight density(RDWD)in the surface soil(0–20 cm)had the strongest relationship with yield,whereas root length density(RLD)in the middle soil(20–40 cm)had a strong relationship with yield.The path model indicated that N uptake is a crucial factor affecting aboveground DM,TRDW,and yield.The above results indicate that N application levels based on critical N absorption improve the production of processing tomatoes by regulating N uptake and root distribution.Furthermore,the results of this study provide a theoretical basis for precise N management.
基金supported by the National Key R&D Program of China(2018YFD1000902)the Natural Science Foundation of Shandong Province(ZR2021QC163).
文摘Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.
基金Supported by Hunan Provincial Postgraduate Education Innovation Project and Professional Ability Improvement Project (CX20211220)Scientific Research Project of Hunan Provincial Department of Education (20A278)+1 种基金Undergraduate Innovation and Entrepreneurship Training Program of Hunan Province (XJT[2021]197,No. 3705)School-level Postgraduate Innovation Experiment Project (24520012)。
文摘[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.
文摘Lateral root is primary organ for plant to explore and utilize soil nutrient efficiently. The development of lateral roots (LR) is controlled by both genetic factors and nutrient status in environment. To investigate the effects of nitrate (NO3-) on rice lateral root growth and nitrogen (N) uptake efficiency under upland condition, three treatments, including root-split culture and whole plant culture in N sufficient and deficient conditions, were used in a vermiculite culture experiment. Root-split treatment showed that the growth of lateral roots was stimulated by localized nitrate supply. However, in whole plant culture, elongation of lateral roots was induced by NO3- deficiency. The effects of NO3- on rice lateral root growth were genotype-dependent. Similar N concentration, soluble sugar concentration and N content in shoot were observed in both root-split treatment and whole plant culture under NO3- sufficient condition, suggesting that the nitrogen requirement for rice normal growth could be satisfied with only half of roots supplied with NO3-. In the root-split treatment, N uptake was positively correlated with the average of lateral root length (ALRL) in NO3--supplied side, suggesting that the ALRL is important for rice root N uptake in the environment where the nitrogen nutrient is limiting factor. No significant correlation was observed between N uptake and ALRL in whole plant culture under N sufficient condition, which implies that the length of lateral roots may not be the main factor to determine tire rice root N uptake in nutrient-rich zone. Morphological and metabolic evidence in this study provided some prospects for genetic improvement of root system characters to improve the efficiency of nutrient absorption in rice.
文摘To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adventitious root length, adventitious root number, total root dry weight and ratio of root to shoot were detected using molecular map including 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on a recombinant inbred line (RIL) population with 150 lines derived from a cross between an lowland rice IR1552 and an upland rice Azucena in both solution culture (lowland condition) and paper culture (upland condition). Six QTLs and twenty-two pairs of epistatic loci for the four parameters were detected. Three QTLs detected for maximum adventitious root length in solution culture (MARLS), total root dry weight in both solution culture and paper culture (TRDWS and TRDWP) accounted for about 20%, 23% and 13% of the total variations, respectively. Only epistatic loci were found for maximum adventitious root length and adventitious root number in paper culture (MARLP and ARNP), and for ratio of root to shoot in both paper and solution culture (R/SP and R/SS), which accounted for about 12%-61% of the total variations in the parameters, respectively. No identical QTL or epistatic loci were found for the parameters in both solution and paper culture. The results indicate that there is a different genetic system responsible to root growth of rice seedlings under lowland and upland conditions and epistasis might be the major genetic basis for MARLP, ARNP, R/SP and R/SS.
文摘Rooting depth and root and shoot biomass were measured for seedlings of 20 species in both watered and unwatered sand columns. The species were from habitats of widely varying moisture status, ranging from marsh to desert. Moisture status of the species' habitats was quantified as Ellenberg moisture number. Seedlings were allowed to grow in moist sand for 21 days and were then exposed to the treatments (watered and unwatered) for a further 21 days. Rooting depth of control plants was not correlated with Ellenberg number. Root depth of plants from dry habitats tended to increase in drying sand, while roots of plants from wet habitats decreased in depth. Plasticity of rooting depth (depth in unwatered / depth in watered sand) was significantly correlated with Ellenberg number ( r 2 = 0.56). Plasticity of shoot/root ratio was also correlated with Ellenberg number, but the relationship was weaker than for rooting depth plasticity. Species that showed the greatest plasticity in rooting depth also showed the greatest ability to sustain shoot growth in unwatered sand. There was some evidence that growth of plants from very dry habitats was reduced in the watered treatment. Results of this study suggest that a major, although not the only, adaptation of plants of dry habitats is the ability of their seedlings to exploit deeply buried water resources.
基金Science&Technology Department of Sichuan Province(2022YFQ0041,2022NSFSC1725,2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+2 种基金The National Natural Science Foundation of China(32160428)Innovative Training Program for College Students(202311079040,S202311079112,CDUCX2023550)Undergraduate Education and Teaching Reform Project of Chengdu University(cdjgb2022186).
文摘Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.
基金supported by the National High Technology Research and Development Program (863 Program) of China(No.2004AA246080)the Program for the Development of High-Tech Industries from the Education Department ofJiangsu Province, China.
文摘Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.
文摘MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transfor- mants have more nuclei and higher anenpioid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role forAtMYB59 in cell cycle regulation and plant root growth.
基金We gratefully acknowledge Dr Jianru Zuo (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) for providing T-DNA mutagenized population of Arabidopsis, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Spain) for providing homozygous atmyc2-2 mutant (T-DNA insertion line SALK_083483) seeds and Dr Jane Glazebrook for assisting with camalexin measurements. This work was supported by grants from the Chinese Academy of Sciences (KSCX2- YW-N-045, KSCX2-YW-N-015), the Ministry of Agriculture of China (2008ZX08009-003-001) and the Ministry of Science and Technology of China (2007CB948201, 2006AA10A116). Work in the laboratory of Jerry D Cohen was supported by grants from the US National Science Foundation (MCB-0725149 and DBI- PGRP-0606666) and the USDA, National Research Initiative (2005-35318-16197).
文摘Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.
基金the Chinese Academy of Sciences Action-plan for West Development (KZCX2-XB3-07) for financial support"Western Light" Talents Training Program of Chinese Academy of Sciences (XBBS200811)
文摘Root growth and spatial and temporal distribution in the 0-100 cm soil profiles of three common annual halophytes Salsola subcrassa, Suaeda acuminate and Petrosimonia sibirica distributed in a saline desert in north- ern Xinjiang, China were studied in 2009 and 2010. The results showed that the root systems of the three halo- phytes were of the taproot type, vertically distributed in the 90-cm soil profile, and were deepest in late July. Their taproots reached maximum depth rapidly, early in the growth period, but with rare lateral roots. They were then dug out in an orderly way, from bottom to top, exhibiting vertical development first and then horizontal development. The distribution of specific root length, which reflects the characteristics of the feeder root, was gradually increased from top to bottom, whereas root weight displayed an opposite distribution pattern. The root length distribution of the three halophytes was concentrated (62% to 76%) in the middle soil profile (20-60 cm), with less distribution in the surface (0-20 cm) and bottom (60-90 cm) soil profiles. The results indicated that the roots of the three annual halophytes grew rapidly into the deeper soil layer after germination, which ensured the plant survival and uptake of water and nutrition, and thus built up a strong tolerance to an arid, high-salt environment.
基金supported by the National Natural Science Foundation of China(31270553)the National 973 Program of China(2009CB118604)the Special Fund for Agro-Scientific Research in the Public Interest of China(201103003)
文摘Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus(P) application at different soil layers on root growth, grain yield, and water-use efficiency(WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive(Xiaoyan 22, XY22) and one drought-tolerant(Changhan 58, CH58). The four P treatments were no P(control, CK), surface P(SP), deep P(DP), and deep-band P application(DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments(DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight(RW) and root length(RL) in deep soil layer(30-100 cm) were closely positively correlated with grain yield and WUE of CH58(but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars(r=0.94, P〈0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars.
基金Funds were provided by the National Key Research and Development Program of China (2018YFD1000900)
文摘Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-316)the National Natural Science Foundation of China (31070477,30870471)the West Light Foundation of the Chinese Academy of Sciences (XBBS201105)
文摘Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.
基金This research was supported by the Sciences Research Foundation of Nanjing Forestry University.
文摘Water relation parameters of bare-root seedlings of Chinese fir (Cunninghamia lanceolata Hook.) and Masson pine (Pinus massoniana Lamb.) were measured and changes of root growth potential as well as field survival rate of both species were studied after the bare-root seedlings were exposed in a sunny field condition. The results showed that Masson pine had a lower osmotic potential (-2.07Mpa) at turgor loss point and at full turgor (-1.29Mpa), compared with Chinese fir (-1.80Mpa and -1.08Mpa respectively). The parameter Vp/V0 (63.27%) of Masson pine was higher than that of Chinese fir (58.03%). This means that Masson pine has a stronger ability to tolerate desiccation, compared to Chinese fir according to analysis of above water relation parameters. Root growth potential and field survival rate decreased with prolonging duration of exposure. The field survival rate of both species was reduced to less than 40% after the seedling being exposed only two hours. Water poten-tials of 1.60 Mpa and -1.70 Mpa were suggested to be critical values for Chinese fir and Masson pine respectively in successful reforestation.
基金part of the projects(49890330,30230230,30070429 and 40201028)supported by the National Natural Science Foundation of China(NSFC)project(G1999011707)supported by the National Key Basic Research Support Funds(NKBRSF).
文摘Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation of the root-growing space greatly affected root growth, decreased total root-absorbing area and TTC-reductive amounts. However, it obviously increased the root active-absorbing area, specific absorbing area(absorbing area per gram root weight)and specific active-absorbing area(actively absorbing area per gram root weight)in addition to promoting the TTC-reductive intensity. This clearly showed that plants were not passively tolerant to stress, but actively regulated their physiological metabolic processes, and strengthened their absorbing ability to increase water and nutrient uptake so that root injury by the environmental stress could be reduced. Supply of water and N stimulated root growth, increased root-absorbing area and activity. promoted nutrient uptake, and therefore increased crop yield and decreased the detrimental effects resulting from the limitation of roots-growing space.
基金This work is supported by the National Natural Science Foundation of China(31500197).
文摘Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormone.Despite its importance,functions of PSK-αin M.truncatula growth remains unknown.In this study,we identified five genes to encode PSK-αprecursors in M.truncatula.All of these precursors possess conserved PSK-αsignature motif.Expression pattern analysis of these MtPSK genes revealed that each gene was expressed in a tissue-specific or ubiquitous pattern and three of them were remarkably expressed in root.Treatment of M.truncatula seedlings with synthetic PSK-αpeptide significantly promoted root elongation.In addition,expression analysis of downstream genes by RNA-seq and qRT-PCR assays suggested that PSK-αsignaling might regulate cell wall structure via PMEI-PME module to promote root cell growth.Taken together,our results shed light on the mechanism by which PSK-αpromotes root growth in M.truncatula,providing a new resource for improvement of root growth in agriculture.
文摘It was hypothesized that wood chips can serve as a mulch to improve the growth of young trees by facilitating the development of their root systems, inhibiting weed germination, and suppressing weed growth. The present study was carried out in Ghorogh Nursery, Golestan Northern Iran, in order to investigate the impact of wood chips applica- tion on root growth of oak (Quercus castaneifolia) seedlings and control of weed. A three centimeter wood chip layer was used on the soil surface as the mulch treatment with bare soil as the control. The number of new roots, the length of exciting roots and the density of weeds were meas- ured after 5 and 12 weeks. Results showed that wood chip application had significant positive effect on the length of excising roots after 5 and 12 weeks compared with control seedlings. Also, weeds were reduced to near zero levels in treated plot. Our findings suggested that wood chip layer on the soil surface in the nursery can conserve soil moisture and prevent nutrient leaching from the rooting zone as well as diminish weed growth which consequently lead to production of high quality seedling.
文摘The root morphology of erect type peanut in deep soil was studied in this paper. In the experiment, erect type peanut showed as most as five-order lateral roots with 13 227 pieces of lateral roots. At the seedling stage, the root system of erect type peanut was handstand cone-typed with lateral roots at various orders distributed around the taproot, and among the roots, the taproot was longest. During the late seedling stage to mature stage, the upper part of the root system of erect type peanut was blunt cone-typed, the middle part was three-dimensional network typed, while the lower part was cyUnder-like. The longest first-order lateral root was the longest root. At the mature stage, the taproot was not always the deepest root.