This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win...This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1).展开更多
In order to research brain problems using MRI,PET,and CT neuroimaging,a correct understanding of brain function is required.This has been considered in earlier times with the support of traditional algorithms.Deep lea...In order to research brain problems using MRI,PET,and CT neuroimaging,a correct understanding of brain function is required.This has been considered in earlier times with the support of traditional algorithms.Deep learning process has also been widely considered in these genomics data processing system.In this research,brain disorder illness incliding Alzheimer’s disease,Schizophrenia and Parkinson’s diseaseis is analyzed owing to misdetection of disorders in neuroimaging data examined by means fo traditional methods.Moeover,deep learning approach is incorporated here for classification purpose of brain disorder with the aid of Deep Belief Networks(DBN).Images are stored in a secured manner by using DNA sequence based on JPEG Zig Zag Encryption algorithm(DBNJZZ)approach.The suggested approach is executed and tested by using the performance metric measure such as accuracy,root mean square error,Mean absolute error and mean absolute percentage error.Proposed DBNJZZ gives better performance than previously available methods.展开更多
Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th...Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.展开更多
Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially ...Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.展开更多
目的利用360°全方向24和36声源测试设备,初步探讨健听中青年和健听老年前期-老年人水平声源定位特点。方法选取2021年4月至2021年9月中国人民解放军总医院耳鼻喉科收治的43例健听成年受试者为研究对象,其中男性22例,女性21例;根据...目的利用360°全方向24和36声源测试设备,初步探讨健听中青年和健听老年前期-老年人水平声源定位特点。方法选取2021年4月至2021年9月中国人民解放军总医院耳鼻喉科收治的43例健听成年受试者为研究对象,其中男性22例,女性21例;根据年龄分为中青年组(21~49岁)20例和老年前期-老年组(50~72岁)23例。两组分别给予纯音听阈测试、全方向24声源(间隔15°)和36声源(间隔10°)水平声源定位(sound localization,SL)能力评估。给声强度60 dB HL,给声刺激为1 kHz啭音,通过计算均方根误差(root mean square,RMS)、平均绝对误差(mean absolutely error,MAE)等评估受试者的声源定位能力。结果24声源老年前期-老年组MAE、RMS均值高于中青年组的MAE、RMS均值,差异有统计学意义(P<0.05);36声源老年前期-老年组MAE、RMS高于中青年组的MAE、RMS,差异无统计学意义(P>0.05)。24声源和36声源前场MAE和RMS均高于后场的MAE和RMS,前后场的MAE和RMS比较,差异有统计学意义(P<0.01);左右场的MAE、RMS比较,差异无统计学意义(P>0.05)。24声源前后混淆比例为7.73%,36声源前后混淆比例为15.42%;24声源和36声源均为正前方的声源定位准确度最差;老年前期-老年组前后混淆的比例高于中青年组,差异无统计学意义(P>0.05)。结论健听老年前期-老年人全方向24声源和36声源水平定位能力,相比健听中青年组有所下降。左右场的定位准确度高,前后场的定位准确度低,正前方定位准确度最低。全方向水平声源定位能力的测试结果与扬声器数量有关,且反应趋势具有一致性。展开更多
基金National Key Research and Development Program of the Ministry of Science(2018YFB1502801)Hubei Provincial Natural Science Foundation(2022CFD017)Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)。
文摘This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1).
文摘In order to research brain problems using MRI,PET,and CT neuroimaging,a correct understanding of brain function is required.This has been considered in earlier times with the support of traditional algorithms.Deep learning process has also been widely considered in these genomics data processing system.In this research,brain disorder illness incliding Alzheimer’s disease,Schizophrenia and Parkinson’s diseaseis is analyzed owing to misdetection of disorders in neuroimaging data examined by means fo traditional methods.Moeover,deep learning approach is incorporated here for classification purpose of brain disorder with the aid of Deep Belief Networks(DBN).Images are stored in a secured manner by using DNA sequence based on JPEG Zig Zag Encryption algorithm(DBNJZZ)approach.The suggested approach is executed and tested by using the performance metric measure such as accuracy,root mean square error,Mean absolute error and mean absolute percentage error.Proposed DBNJZZ gives better performance than previously available methods.
文摘Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon.
文摘Network planning is essential for the construction and the development of wireless networks. The network planning cannot be possible without an appropriate propagation model which in fact is its foundation. Initially used mainly for mobile radio networks, the optimization of propagation model is becoming essential for efficient deployment of the network in different types of environment, namely rural, suburban and urban especially with the emergence of concepts such as digital terrestrial television, smart cities, Internet of Things (IoT) with wide deployment for different use cases such as smart grid, smart metering of electricity, gas and water. In this paper we use an optimization algorithm that is inspired by the principles of magnetic field theory namely Magnetic Optimization Algorithm (MOA) to tune COST231-Hata propagation model. The dataset used is the result of drive tests carry out on field in the town of Limbe in Cameroon. We take into account the standard K-factor model and then use the MOA algorithm in order to set up a propagation model adapted to the physical environment of a town. The town of Limbe is used as an implementation case, but the proposed method can be used everywhere. The calculation of the root mean square error (RMSE) between the real data from the radio measurements and the prediction data obtained after the implementation of MOA allows the validation of the results. A comparative study between the value of the RMSE obtained by the new model and those obtained by the optimization using linear regression, by the standard COST231-Hata models, and the free space model is also done, this allows us to conclude that the new model obtained using MOA for the city of Limbe is better and more representative of this local environment than the standard COST231-Hata model. The new model obtained can be used for radio planning in the city of Limbé in Cameroon.
文摘目的利用360°全方向24和36声源测试设备,初步探讨健听中青年和健听老年前期-老年人水平声源定位特点。方法选取2021年4月至2021年9月中国人民解放军总医院耳鼻喉科收治的43例健听成年受试者为研究对象,其中男性22例,女性21例;根据年龄分为中青年组(21~49岁)20例和老年前期-老年组(50~72岁)23例。两组分别给予纯音听阈测试、全方向24声源(间隔15°)和36声源(间隔10°)水平声源定位(sound localization,SL)能力评估。给声强度60 dB HL,给声刺激为1 kHz啭音,通过计算均方根误差(root mean square,RMS)、平均绝对误差(mean absolutely error,MAE)等评估受试者的声源定位能力。结果24声源老年前期-老年组MAE、RMS均值高于中青年组的MAE、RMS均值,差异有统计学意义(P<0.05);36声源老年前期-老年组MAE、RMS高于中青年组的MAE、RMS,差异无统计学意义(P>0.05)。24声源和36声源前场MAE和RMS均高于后场的MAE和RMS,前后场的MAE和RMS比较,差异有统计学意义(P<0.01);左右场的MAE、RMS比较,差异无统计学意义(P>0.05)。24声源前后混淆比例为7.73%,36声源前后混淆比例为15.42%;24声源和36声源均为正前方的声源定位准确度最差;老年前期-老年组前后混淆的比例高于中青年组,差异无统计学意义(P>0.05)。结论健听老年前期-老年人全方向24声源和36声源水平定位能力,相比健听中青年组有所下降。左右场的定位准确度高,前后场的定位准确度低,正前方定位准确度最低。全方向水平声源定位能力的测试结果与扬声器数量有关,且反应趋势具有一致性。