期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Differing responses of root morphology and physiology to nitrogen application rates and their relationships with grain yield in rice 被引量:1
1
作者 Kun Liu Yun Chen +6 位作者 Siyu Li Weilu Wang Weiyang Zhang Hao Zhang Junfei Gu Jianchang Yang Lijun Liu 《The Crop Journal》 SCIE CSCD 2023年第2期618-627,共10页
Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their r... Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates. 展开更多
关键词 Rice(Oryza sativa L.)varieties Nitrogen(N)application rate Grain yield root morphology and physiology N sensitivities
下载PDF
Responses of maize germination,root morphology and leaf trait to characteristics of lead pollution:a case study
2
作者 Yongjian He Ranran Jiang Xiuli Hou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期184-196,共13页
On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60... On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60,80,100,150,200,500,1000,2000,3000 mg/L)were analyzed.The results showed that maize germination rate,germination vigor and growth index decreased with the increase of Pb concentration.The root length,surface area of maize increased by 0.21%-81.58%,8.99%-73.43%,1.50%-77.37%,respectively,under 20-500 mg/L Pb concentration.However,these parameters under 1000-3000 mg/L Pb concentration decreased by 37.86%-553.54%,44.99%-766.16%,55.99%-92.81%,respectively,and these lowest value appeared in 3000 mg/L Pb treatment.The root volume of maize increased by 4.57%-89.25%in 20-80 mg/L Pb concentration,and it decreased with the increase of Pb concentration when the Pb concentration was higher than 80 mg/L and decreased by 94.13%in 3000 mg/L Pb.The root surface area and length of 0.50-1.00 diameter class were higher than those of other diameter classes,and these value of maize under 500 mg/L Pb were higher than those of other concentrations.The length and perimeter of maize leaves with the highest value of 220.36 and 962.68 mm,respectively appeared in 60 mg/L Pb treatment.The leaf width and area of maize with the highest value of 15.68 mm and 2448.31 mm^(2),respectively,appeared in 40 mg/L Pb treatment,which indicated that the leaf traits of maize were promoted by low concentration Pb and inhibited by high concentration Pb. 展开更多
关键词 Pb stress root morphology Leaf traits Seed germination
下载PDF
Root Morphology and Physiology in Relation to the Yield Formation of Rice 被引量:42
3
作者 YANG Jian-chang ZHANG Hao ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第6期920-926,共7页
Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice... Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology. 展开更多
关键词 rice (Oryza sativa) root morphology and physiology grain yield grain filling alternate wetting and moderatedrying
下载PDF
Response of root morphology, physiology and endogenous hormones in maize(Zea mays L.) to potassium deficiency 被引量:8
4
作者 ZHAO Xin-hua YU Hai-qiu +4 位作者 WEN Jing WANG Xiao-guang DU Qi WANG Jing WANG Qiao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期785-794,共10页
Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully... Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (-K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under -K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under-K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under-K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency. 展开更多
关键词 potassium deficiency MAIZE root morphology physiological variation endogenous hormone
下载PDF
Root Morphology and Anatomy Affect Cadmium Translocation and Accumulation in Rice 被引量:1
5
作者 XIAO Anwen CHEN Danting +1 位作者 LI Wai Chin YE Zhihong 《Rice science》 SCIE CSCD 2021年第6期594-604,I0049-I0052,共15页
Paddy fields contaminated with cadmium(Cd)present decreased grain yield and produce Cckcontaminated grains.Screening for low-Cd-accumulating cultivars is a useful method to reduce the amount of Cd in the grains.The pr... Paddy fields contaminated with cadmium(Cd)present decreased grain yield and produce Cckcontaminated grains.Screening for low-Cd-accumulating cultivars is a useful method to reduce the amount of Cd in the grains.The present study aimed to examine the roles of the root morphology and an atomy in Cd tran slocati on and accumulati on in rice plants.Twenty・two rice cultivars were used in the first experiment,after which two cultivars[Zixiangnuo(ZXN)and Jinyou T36(JYT36)]were selected and used in subsequent experiments under hydroponic conditions.The results showed that there were significant differences in Cd concentrations in the shoots(ranging from 4 to 100 mg/kg)and the Cd translocation rates(shoot/root)(from 7%to 102%)among the 22 cultivars,and the shoot Cd concentration was significantly correlated with the Cd translocation rate of the 22 cultivars under 0.1 mg/L Cd treatment.Compared with cultivar ZXN,JYT36 had greater root Cd uptake and accumulation but lower shoot Cd accumulation and Cd translocation rate.The number of root tips per surface area of cultivar ZXN was greater than that of JYT36,while the average root diameter was lower than that of JYT36.Compared with ZXN,JYT36 had stronger apoplastic barriers,and the Casparian bands and suberin lamellae in the root endodermis and exodermis were closer to the root apex in both the control and Cd treatments,especially for suberin lamellae in the root exodermis with Cd treatments,with a differenee of 25 mm.The results also showed that,compared with ZXN,JYT36 had greater percentages of Cd bound in cell walls and intracellular Cd but lower Cd concentrations in the apoplastic fluid under the Cd treatment.The results suggested that Cd translocation,rather than root Cd uptake,is a key process that determi nes Cd accumulati on in the rice shoots.The root morphological and an atomical characteristics evidently affect Cd accumulation in the shoots by inhibiting Cd translocation,especially via the apoplastic pathway.It was possible to pre-screen low・Cd・accumulating rice cultivars on the basis of their root morphology,an atomical characteristics and Cd tran slocati on rate at the seedling stage. 展开更多
关键词 apoplastic pathway Cd stress Cd translocation Cd accumulation RICE root morphology and an atomy
下载PDF
Influence of Biochar on Nitrogen Use Efficiency and Root Morphology of Rice-Seedling in Two Contrasting Paddy Soils 被引量:1
6
作者 Lei Chu Yu Zhang +2 位作者 Long Qian Dandan Zhu Haijun Sun 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第4期1035-1042,共8页
Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(... Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(Hydragric Anthrosol and Haplic Acrisol),two biochar application rates(0.5 wt%and 1.5 wt%)and two rice varieties(common rice var.Xiushui134 and hybrid super rice var.Zhongkejiayou12-6)meanwhile.Seedling NUE of common rice Xiuhui134 was significantly increased(p<0.05)by 78.2%in Hydragric Anthrosol and by 91.4%in Haplic Acrisol following biochar addition with 1.5 wt%.However,biochar addition exerted no influence on seedling NUE of super rice Zhongkejiayou12-6 in both soils.Overall,0.09–0.10 units higher soil pH and 105–116%higher soil NH_(4)^(+)-N were observed in Xiushui134 growing two soils with 1.5 wt%biochar.In addition,improved root morphology(including longer root length,larger root surface area,bigger root volume,and more root tips)contributed to the higher seedling NUE of Xiushui134 in two soils.The soil pH and NH_(4)^(+)-N content,also the root morphology were influenced by biochar,which though could not thoroughly explained the NUE of Zhongkejiayou12-6.In conclusion,biochar application to paddy soil changed soil pH and NH_(4)^(+)-N content,root growth,and the consequent seedling NUE of rice,which effects are relative with rice cultivar,biochar addition rate,and soil type. 展开更多
关键词 Ammonium BIOCHAR nitrogen management rice paddy soil root morphology super rice
下载PDF
Genotypic variation in root morphology, cotton subtending leaf physiology and fiber quality against nitrogen 被引量:1
7
作者 ASIF Iqbal DONG Qiang +5 位作者 WANG Xiangru GUI Huiping ZHANG Hengheng PANG Nianchang ZHANG Xiling SONG Meizhen 《Journal of Cotton Research》 2021年第4期358-371,共14页
Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relatio... Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relationship between root morphology,subtending leaf physiology,and fiber quality of contrasting N-efficient cotton genotypes in response to N.Methods:We analyzed the above parameters of CCRI 69(N-efficient)and Xinluzao-30(XLZ-30,N-inefficient)under control(2.5 mmol·L^(-1))and high N(5 mmol·L^(-1))conditions.Results:The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N.Subtending leaf morphology,chlorophyll and carotenoid contents,free amino acids,and soluble proteins were higher under high N as compared with the control.However,soluble sugars,fructose,sucrose contents,and sucrose phosphate synthase were higher under control conditions than high N across the growth stages.Irrespective of the N conditions,all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30.Except for fiber uniformity,fiber quality traits like fiber length,strength,micronaire,and elongation were improved under control conditions than high N.Between the genotypes,CCRI-69 had significantly higher fiber length,strength,micronaire,and elongation as compared with XLZ-30.Strong positive correlations were found between root morphology,soluble sugars,sucrose content,and sucrose phosphate synthase activity with fiber quality traits,respectively.Conclusions:These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition,which will help to reduce fertilizer use,the cost of production,and environmental pollution. 展开更多
关键词 COTTON Fiber quality NITROGEN root morphology Subtending leaf
下载PDF
Root Morphology, Plant Growth, Nitrate Accumulation and Nitrogen Metabolism of Temperate Lettuce Grown in the Tropics with Elevated Root-Zone CO2 at Different Root-Zone Temperatures 被引量:1
8
作者 Jie He Lin Qin Sing Kong Lee 《American Journal of Plant Sciences》 2016年第14期1821-1833,共14页
This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and... This paper investigated the effects of root-zone (RZ) CO<sub>2</sub> concentration ([CO<sub>2</sub>]) on root morphology and growth, nitrate (NO<sub>3</sub>-</sup>) uptake and assimilation of lettuce plants at different root-zone temperatures (RZT). Elevated RZ [CO<sub>2</sub>] stimulated root development, root and shoot growth compared to ambient RZ [CO<sub>2</sub>]. The greatest increase in root growth was observed in plants grown under elevated RZ [CO<sub>2</sub>] of 50,000 ppm. However, RZ [CO<sub>2</sub>] of 10,000 ppm was sufficient to achieve the maximal leaf area and shoot productivity. Lettuce plants exhibited faster shoot and root growth at 20°C-RZT than at ambient (A)-RZT. However, under elevated RZ [CO<sub>2</sub>], the magnitude of increased growth was greater at A-RZT than at 20°C-RZT. Compared to RZ [CO<sub>2</sub>] of 360 ppm, elevated RZ [CO<sub>2</sub>] of 10,000 ppm increased NO<sub>3</sub>-</sup> accumulation and nitrate reductase activity (NRA) in both leaves and roots. NO<sub>3</sub>-</sup> concentrations of leaf and root were higher at 20°C-RZT than at A-RZT in all plants. NRA was higher in root than in leaf especially under A-RZT. The total reduced nitrogen (TRN) concentration was significantly higher in plants grown under elevated RZ [CO<sub>2</sub>] of 10,000 ppm than under ambient RZ [CO<sub>2</sub>] of 360 ppm with greater concentration in 20°C-RZT plants than in A-RZT plants. These results imply that elevated RZ [CO<sub>2</sub>] significantly affected root morphology, root and shoot growth and N metabolism of temperate lettuce with greater impacts at A-RZT than at 20°C-RZT. These findings have practical significance to vegetable production by growing the vegetable crops at cool-RZT with elevated RZ [CO<sub>2</sub>] to enhance its productivity. 展开更多
关键词 LETTUCE Nitrate Assimilation Nitrate Uptake root morphology root-Zone CO2 root-Zone Temperature
下载PDF
The adaptive significance of differences of root morphology, anatomy and physiology from three ecotypes of reed(Phragmites communis Trin.)
9
作者 YuBing Liu XinRong Li +2 位作者 ZhiShan Zhang XiaoJun Li Jin Wang 《Research in Cold and Arid Regions》 CSCD 2016年第3期196-204,共9页
Reeds are widely distributed in drought and high salt conditions of northwestern China. Leaf epidermal micromorphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics due to long-term adaptati... Reeds are widely distributed in drought and high salt conditions of northwestern China. Leaf epidermal micromorphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics due to long-term adaptation in the natural habitats of common reed (Phragmites communis Trin.) contrasted considerably among three different ecotypes: dune reed (DR), Gobi salt reed (GSR) and swamp reed (SR). The main objective of the present study is to determine the adapting characteristics of morphology, anatomy and physiological responses of thin roots in DR, GSR and SR. The results show that root length density was higher in SR and few root hairs were observed in DR. Cross-section anatomical features show that each ecotype has an endodermis and exodermis, while cortex thickness and proportion of root cortical aerenchyma and stele in root structure varied among the three ecotypes. The stele and xylem share a larger area in DR compared to GSR and SR. GSR has a large proportion of the cortex with radialized distribution of aerenchyma cells spacing, and the cortex has a peripheral, mechanically stiff ring in the exodermis. SEM and TEM microscope images show that GSR has a scle- renchyma ring with high lignification in the exodermis. The physio-chemical parameters show that GSR had a higher level of stress tolerance than DR. These findings indicate that developed water-absorbing tissues were largely distributed in the root structure of DR, and a main framework with supporting function spacing with aerenchyma was dominant in GSR in the long term adaptation to their natural habitats, respectively. 展开更多
关键词 Phragmites communis ECOTYPE root morphology cross-section anatomy physio-chemical parameters
下载PDF
Root morphology in response to nitrogen supply in mid-season indica rice cultivars released in different decades 被引量:7
10
作者 Yikai Zhang Huizhe Chen +3 位作者 Yuping Zhang Jing Xiang Guangmei Ji Defeng Zhu 《Science China(Life Sciences)》 SCIE CAS CSCD 2017年第4期439-442,共4页
Dear Editor,Roots,as a major organ of plants,are involved in nutrient and water acquisition,and might play a vital role in yield increase and efficient N absorption with genetic improvement.Because of the great differ... Dear Editor,Roots,as a major organ of plants,are involved in nutrient and water acquisition,and might play a vital role in yield increase and efficient N absorption with genetic improvement.Because of the great differences in growth period and pattern between the old and new rice cultivars,it is difficult to clarify how genetic improvements contribute to root growth in rice.For example,for a solution culture system,Wu et al.suggested that total root length increased with increasing year of release for maize hybrids,while shoot dry weight, 展开更多
关键词 root length FIGURE root morphology in response to nitrogen supply in mid-season indica rice cultivars released in different decades
原文传递
Integration of root architecture,root nitrogen metabolism,and photosynthesis of‘Hanfu’apple trees under the cross-talk between glucose and IAA 被引量:2
11
作者 Bianbin Qi Xin Zhang +2 位作者 Zhiquan Mao Sijun Qin Deguo Lv 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期631-644,共14页
Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose... Sugars and auxin have important effects on almost all phases of plant life cycle,which are so fundamental to plants and regulate similar processes.However,little is known about the effect of cross-talk between glucose and indole-3-acetic acid(IAA)on growth and development of apple trees.To examine the potential roles of glucose and IAA in root architecture,root nitrogen(N)metabolism and photosynthetic capacity in‘Hanfu’(Malus domestica),a total of five treatments was established:single application of glucose,IAA,and auxin polar transport inhibitor(2,3,5-triiodobenzoic acid,TIBA),combined application of glucose with TIBA and that of glucose with IAA.The combined application of glucose with IAA improved root topology system and endogenous IAA content by altering the mRNA levels of several genes involved in root growth,auxin transport and biosynthesis.Moreover,the increased N metabolism enzyme activities and levels of genes expression related to N in roots may suggest higher rates of transformation of nitrate(NO3--N)into amino acids application of glucose and IAA.Contrarily,single application of TIBA decreased the expression levels of auxin transport gene,hindered root growth and decreased endogenous IAA content.Glucose combined with TIBA application effectively attenuated TIBA-induced reductions in root topology structure,photosynthesis and N metabolism activity,and mRNA expression levels involved in auxin biosynthesis and transport.Taken together,glucose application probably changes the expression level of auxin synthesis and transport genes,and induce the allocation of endogenous IAA in root,and thus improves root architecture and N metabolism of root in soil with deficit carbon. 展开更多
关键词 MALUS Cross-talk between glucose and IAA root morphology Nitrogen metabolism Photosynthesis
下载PDF
Loss of Masticatory Function Affects Morphology of the Tooth Root in Rats
12
作者 Takamichi Yamada Kei Ogawa Takehiko Shimizu 《Open Journal of Stomatology》 2021年第1期37-54,共18页
Masticatory hypofunction and soft food affect the tooth rows, occlusion, and jawbone. This study aimed to clarify the influence of tooth loss and a soft diet <span>on morphology of the tooth root during the grow... Masticatory hypofunction and soft food affect the tooth rows, occlusion, and jawbone. This study aimed to clarify the influence of tooth loss and a soft diet <span>on morphology of the tooth root during the growth period. We divided</span><span> 3-week-</span><span>old Wistar rats into the following three groups: Hard diet group (rats raised on solid standard diet), Powder diet group (rats raised on powdered standard feed diet), and Extraction group (rats raised on powdered standard diet with maxillary molars extraction). Length, width, cross-sectional area, and volume </span><span>of the root of the mandibular M1 and M2 were measured using micro-CT</span><span> analysis. Non-decalcified thin-slice specimens of sagittal sections of the M1 were obtained at the age of 20 weeks, and the roots were observed. The root length of all roots in the Extraction group was significantly longer than that in the other groups. The root width and cross-sectional area at the apical side 1/4 of all roots in the Extraction group were significantly smaller than those in the other groups. The root volume of the M1 mesial root in the Extraction group was significantly smaller than that in the other groups.</span><span> </span><span>This study clarified that when masticatory stimulus in the immature teeth is reduced by the extraction of opposing teeth and a powder diet, the root length increases due </span><span>to the promotion of cellular cementum addition at the apex, and the root</span><span> width and cross-sectional area decrease due to the suppression of cellular cementum addition at the apical side 1/4 of the roots.</span> 展开更多
关键词 RATS Tooth root morphology Powder Diet Extraction of Molars MICRO-CT
下载PDF
Effects of Root Cutting on Morphological Characteristics and Endogenous Hormone Levels of Quercus variabilis Seedlings
13
作者 Ruoyi Ni Hao Dou +3 位作者 Shuwen Bi Tiantian Wang Jin’e Quan Xitian Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第10期2907-2920,共14页
The objective of this study was to investigate the effects of root cutting stress on the dynamic changes of endogenous hormone content and growth characteristics of Quercus variabilis roots,and to explore the physiolo... The objective of this study was to investigate the effects of root cutting stress on the dynamic changes of endogenous hormone content and growth characteristics of Quercus variabilis roots,and to explore the physiological role of endogenous hormones in regulating root-crown interactions in the short term.The morphological characteristics and endogenous hormone contents of normal roots(no root cutting,CK)and cut roots(cut by 1/3 of the length of the main root,RP)were determined by liquid chromatography,which was combined with mass spectrometry at different levels of different developmental stages.The results showed that the root growth indexes and root endogenous hormones in the RP group were superior to those in the CK group.Through comprehensive analysis of endogenous hormones,it was found that the crosstalk of IAA,JA,ABA and SA could activate the root growth defense.After the root cutting treatment,the root growth of Quercus variabilis seedlings could compensate for the inhibition of taproot growth by promoting lateral root growth.The growth and development of compensatory lateral roots contribute to the increase the total root length of plants,thus promoting the absorption of water and nutrients.It is speculated that plant hormones may be the key factors affecting their development,but this is not only related to the content of a single hormone,but more importantly,it is the interaction between various hormones. 展开更多
关键词 Quercus variabilis root cutting injury endogenous hormones root morphology
下载PDF
Root Canal System Variation in Mandibular Second Molar: Middle-Mesial Canal
14
作者 Juan G. Robledo María Pía Visconti Farkas Pablo A. Rodríguez 《Open Journal of Stomatology》 2023年第1期25-31,共7页
Middle-mesial canals in mandibular molars are present in the population depending on age, sex and ethnicity. However, limited literature alludes to its prevalence. Troughing procedures may enhance identification, clea... Middle-mesial canals in mandibular molars are present in the population depending on age, sex and ethnicity. However, limited literature alludes to its prevalence. Troughing procedures may enhance identification, cleaning and shaping. This case report expresses the recognition and management of middle-mesial canal in a mandibular second molar of 24 years old Hispanic-Latino male. 展开更多
关键词 Anatomical Variation Middle-Mesial Canal root Canal morphology Mandibular Second Molar
下载PDF
Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape
15
作者 Ping Xu Hao Li +6 位作者 Haiyuan Li Ge Zhao Shengjie Dai Xiaoyu Cui Zhenning Liu Lei Shi Xiaohua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1134-1149,共16页
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ... Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape. 展开更多
关键词 genome-wide association studies(GWAS) root morphology traits(RMTs) organic phosphorus(Po) oilseed rape BnPAP17
下载PDF
Influence of soil moisture content on pullout properties of Hippophae rhamnoides Linn. roots 被引量:5
16
作者 ZHANG Chao-bo LIU Ya-ting +1 位作者 LI Dong-rong JIANG Jing 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2816-2826,共11页
Plant root system plays an important role in preventing soil erosion and improving slope stability.However,its performance is significantly affected by soil moisture content,and the role of soil moisture in root reinf... Plant root system plays an important role in preventing soil erosion and improving slope stability.However,its performance is significantly affected by soil moisture content,and the role of soil moisture in root reinforcement is not fully understood.In this study,the influence of soil moisture on root pullout properties was studied by experiments.Vertical in-situ pullout tests under four different levels of soil matric suction(12 kPa,18 kPa,24 kPa,30 kPa)were carried out on roots of sea buckthorn plants(Hippophae rhamnoides Linn.)which were artificially cultivated for 7 months.Diameter and length of the root system of sea buckthorn were investigated.The results showed that a very significant correlation was observed between root diameter(D)and root length(L)(P<0.01),and root diameter decreased with soil depth.When soil bulk density was constant,peak pullout force(F)and friction coefficient of root-soil interface(μ)decreased with increasing gravimetric soil moisture content in power functions.Soil moisture content significantly affected root pullout resistance because the increase of soil moisture content decreased the friction coefficient between the roots and soil.Root diameter at breakage point(Db)and length of root segment left in soil(Lb)were increased with soil moisture content.In addition,peak pullout force of the roots increased in a power function with root diameter at the soil surface(D0)and in a linear function with total root length(L).The results provided an experimental basis for quantifying the effects of soil moisture content on soil reinforcement by plant roots. 展开更多
关键词 Soil moisture content Peak pullout force root pullout tests root reinforcement root morphology Hippophae rhamnoides Linn
下载PDF
Nitrogen acquisition,fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition 被引量:6
17
作者 SHAO Ze-qiang ZHENG Cong-cong +4 位作者 Johannes APOSTMA LU Wen-long GAO Qiang GAO Ying-zhi ZHANG Jin-jing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2240-2254,共15页
Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to whic... Nitrogen(N)fixation by legumes and nitrogen transfer to cereals have been considered as important pathways for overyielding and higher N use efficiency in cereal/legume intercropping systems.However,the extent to which root morphology contributes to N fixation and transfer is unclear.A two-factorial greenhouse experiment was conducted to quantify the N fixation,transfer and root morphology characteristics of the maize/alfalfa intercropping system in two consecutive years using the 15N-urea leaf labeling method,and combining two N levels with three root separation techniques.N application could inhibit N fixation and transfer in a maize/alfalfa intercropping system.Irrespective of the N application level,compared with plastic sheet separation(PSS),no separation(NS)and nylon mesh separation(NNS)significantly increased the total biomass(36%)and total N content(28%),while the N fixation rate also sharply increased by 75 to 134%,and the amount of N transferred with no root barrier was 1.24–1.42 times greater than that with a mesh barrier.Redundancy analysis(RDA)showed that the crown root dry weight(CRDW)of maize and lateral root number(LRN)of alfalfa showed the strongest associations with N fixation and transfer.Our results highlight the importance of root contact for the enhancement of N fixation and transfer via changes in root morphology in maize/alfalfa intercropping systems,and the overyielding system was achieved via increases in maize growth,at the cost of smaller decreases in alfalfa biomass production. 展开更多
关键词 maize/alfalfa intercropping nitrogen fixation and transfer root morphology nitrogen utilization
下载PDF
Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system 被引量:3
18
作者 Jin Chen Xiangcheng Zhu +11 位作者 Jiang Xie Guoqiang Deng Tianhua Tu Xianjiao Guan Zhen Yang Shan Huang Xianmao Chen Caifei Qiu Yinfei Qian Caihong Shao Minggang Xu Chunrui Peng 《The Crop Journal》 SCIE CSCD 2021年第4期805-815,共11页
Rational nitrogen(N) application can greatly increase rice(Oryza sativa L.) yield. However, excessive N input can lead not only to low N use efficiency(NUE) but also to severe environmental pollution.Reducing N applic... Rational nitrogen(N) application can greatly increase rice(Oryza sativa L.) yield. However, excessive N input can lead not only to low N use efficiency(NUE) but also to severe environmental pollution.Reducing N application rate with a higher planting density(RNHD) is recommended to maintain rice yield and improve NUE. The effects of RNHD on fertilizer N fate and rice root growth traits remain unclear. We accordingly conducted a two-year field experiment to investigate the influence of RNHD on rice yield, fertilizer 15N fate, and root growth in a double-rice cropping system in China. In comparison with the conventional practice of high N application with sparse planting, RNHD resulted in similar yield and biomass production as well as plant N uptake. RNHD increased agronomic NUEs by 23.3%–31.9%(P < 0.05) and N recovery efficiency by 17.4%–24.1%(P < 0.05). RNHD increased fertilizer 15N recovery rate by 14.5%–34.7%(P < 0.05), but reduced15 N retention rate by 9.2%–12.0%(P < 0.05). Although a reduced N rate led to significantly reduced root length, surface area, volume, and biomass, these root traits were significantly increased by higher planting density. RNHD did not affect these root morphological traits and reduced activities of nitrate reductase(NR) and glutamine synthetase(GS) only at tillering stage. Plant N uptake was significantly positively correlated with these root traits, but not correlated with NR and GS activities. Together, these findings show that reducing N application with dense planting can lead to high plant N uptake by maintaining rice root growth and thus increase NUE. 展开更多
关键词 RICE Planting density N recovery efficiency root morphology South China
下载PDF
Changes of oxidative metabolism in the roots of wheat(Triticum aestivum L.)seedlings in response to elevated ammonium concentrations 被引量:1
19
作者 LIU Yang LI Yu-xiang +4 位作者 LI Yi-xiang TIAN Zhong-wei HU Jin-ling Steve ADKINS DAI Ting-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第5期1216-1228,共13页
To elucidate the response of oxidative metabolism,triggered by elevated ammonium(NH_(4)^(+))concentrations,on root growth of wheat seedlings,Yumai 49(NH_(4)^(+)-tolerant)and Lumai 15(NH_(4)^(+)-sensitive)cultivars wer... To elucidate the response of oxidative metabolism,triggered by elevated ammonium(NH_(4)^(+))concentrations,on root growth of wheat seedlings,Yumai 49(NH_(4)^(+)-tolerant)and Lumai 15(NH_(4)^(+)-sensitive)cultivars were supplied with either 5.0 mmol L^(–1)NH_(4)^(+)-N(EAC)or 5.0 mmol L–1 NO_(3)–-N(CON)under hydroponic conditions.Root growth in both cultivars was significantly reduced under EAC,and the negative effect was greater in Lumai 15.EAC enhanced the activities of monodehydroascorbate reductase and dehydroascorbate reductase in the roots of both cultivars,while it decreased ascorbic acid(ASA)content and GDP-mannose pyrophosphorylase(GMPase)activity at the 12 th day after treatment in Lumai 15 by 62.0 and 71.4%;and in Yumai 49 by 38.8 and 62.2%,respectively,indicating that the regeneration of ASA was increased,but the biosynthesis of ASA was reduced under EAC treatment.Moreover,EAC increased DHA/ASA,reactive oxygen species(ROS),and malondialdehyde contents,as well as antioxidant enzyme activities in the roots of both cultivars.Relatively greater increases in ROS and soluble sugar,and lower antioxidant enzyme activities in Lumai 15 indicate severe disruption of oxidative metabolism when compared to Yumai 49.Results reveal that the reduction of ASA biosynthesis via decreased GMPase activity under the EAC condition probably acts as a trigger for accumulated ROS and imbalanced redox status,resulting in root growth inhibition during wheat seedling growth stage.Yumai 49,being an NH_(4)^(+)-tolerant cultivar,had the stronger capacity to protect itself from oxidative stress,which allowed it to retain a lower DHA to ASA ratio by maintaining a better redox homeostasis than could be maintained in the NH_(4)^(+)-sensitive cultivar Lumai 15. 展开更多
关键词 elevated ammonium concentrations oxidative metabolism redox homeostasis root morphology WHEAT
下载PDF
The Effects of Fertilizers on Rabbiteye Blueberry(Vaccinium ashei Reade.)Root Distribution and Fruit Yield
20
作者 Xiaolan Guo Chenyan Liu +1 位作者 Muhammad Shakeel Delu Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第6期1289-1302,共14页
The root system plays an important role in the growth and development of blueberry.The aim of this study was to assess the impacts of different fertilizers on the root growth and root–yield relationship of blueberry ... The root system plays an important role in the growth and development of blueberry.The aim of this study was to assess the impacts of different fertilizers on the root growth and root–yield relationship of blueberry to provide insight into the regulation of root growth and fruit yield by fertilizing from the perspective of the root system.Rabbiteye blueberry variety‘Britewell’as the test material,and six fertilizers,including BF,OR,CF,SF,HF,and RT were used in single-factor fertilization experiments to analyze the effects of different fertilizer treatments on the root morphology,root distribution,and fruit yield of blueberry.Fertilization overall increased the root length density and root surface area in most soil layers,and the RT treatment significantly increased the total root length density and total root surface area 98.6%and 98.5%,respectively,compared with a control lacking fertilizer.In addition,the effect of fertilization on the blueberry root system was mainly observed in the 0–20 cm layer.Fruit yield was positively correlated with total root length density and total root surface area,and negatively correlated with average root diameter.In summary,the SF and RT treatments increased the morphological indexes of the root system,particularly in the shallow soil layers,leading to an increase in blueberry fruit yield. 展开更多
关键词 FERTILIZATION membership function root morphology rabbiteye blueberry
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部