The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
为了实现异步电动机转子断条故障的准确检测,提出了一种基于多重信号分类MUSIC(root multiple signal classification)与普罗尼P rony算法相结合的异步电动机转子断条故障检测新方法。MUSIC方法具有频率分辨力高,所需数据少的特点。首...为了实现异步电动机转子断条故障的准确检测,提出了一种基于多重信号分类MUSIC(root multiple signal classification)与普罗尼P rony算法相结合的异步电动机转子断条故障检测新方法。MUSIC方法具有频率分辨力高,所需数据少的特点。首先利用该方法计算出异步电机转子发生断条故障时的特征分量及其他分量的频率值,进而引入扩展Prony法中的最小二乘法,估计出特征分量及其它分量的幅值和初相角。仿真及实验结果表明,基于MUSIC和Prony算法的异步电动机转子断条故障检测方法切实可行,并且适用于负荷波动、噪声干扰等不利情况。展开更多
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971217,61971218)the Natural Science Foundation of Jiangsu Province(No.BK20200444)the National Key Research and Development Project(No.2020YFB1807602)。
文摘电力系统中电力电子产生的谐波数量不断增加,谐波问题是一个重要的问题。本文提出了一种改进的互质采样(Coprime sampling,CS)方案,用于谐波和间谐波频率估计。所提方案使用稀疏采样来降低采样率,并将其与现代频谱估计算法相结合。特别是,使用分段互质采样(Segmented coprime sampling,SCS)方法,然后使用求根多重信号分类(Root-multiple signal classification,root-MUSIC)算法代替常用的MUSIC算法可以减少计算工作量并获得准确的频率估计。仿真结果表明,该方法在估计精度上优于传统的均匀采样(Uniform sampling,US)方法。
文摘针对近场源参数估计计算复杂度大的问题,提出了一种基于对称阵列结构的快速估计算法。首先通过对称阵列结构构造多项式,通过求解多项式的根得到近场源的角度信息;在距离估计的时候,结合压缩多重信号分类算法(Compressed multiple signal classification,C-MUSIC)的思想,将菲涅尔区域分为若干个子区域,通过构造噪声子空间簇的交集,得到新的谱函数,将原来整个区域搜索变换成小区域搜索,可节省运算时间。通过仿真试验验证了算法的有效性,证明该算法的运算复杂度与传统估计算法相比得到了很大改善。
文摘为了实现异步电动机转子断条故障的准确检测,提出了一种基于多重信号分类MUSIC(root multiple signal classification)与普罗尼P rony算法相结合的异步电动机转子断条故障检测新方法。MUSIC方法具有频率分辨力高,所需数据少的特点。首先利用该方法计算出异步电机转子发生断条故障时的特征分量及其他分量的频率值,进而引入扩展Prony法中的最小二乘法,估计出特征分量及其它分量的幅值和初相角。仿真及实验结果表明,基于MUSIC和Prony算法的异步电动机转子断条故障检测方法切实可行,并且适用于负荷波动、噪声干扰等不利情况。