期刊文献+
共找到3,521篇文章
< 1 2 177 >
每页显示 20 50 100
Eco-geochemical Characteristics of Muskmelon Root Soil in Planting Region of Hetao Irrigation Area of Inner Mongolia
1
作者 侯俊琳 《Agricultural Science & Technology》 CAS 2016年第9期2147-2151,共5页
[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide s... [Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards. 展开更多
关键词 root system soil Anthropogenic-alluvial soil Saline soil Eco-geochemical characteristics
下载PDF
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
2
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period rooted soil Shear resistance characteristics root traits soil physical properties
下载PDF
Dynamic of Soil Microorganisms from Root Region of Ginseng with Different Growing Years 被引量:16
3
作者 李勇 刘时轮 +2 位作者 易茜茜 傅俊范 丁万隆 《Agricultural Science & Technology》 CAS 2009年第6期141-143,共3页
Objective To see the dynamic of fungi, bacilli and actinomyces communities from root region of ginseng with different growing years.Method With ginseng root region soils from several sampling sites of Jilin Province a... Objective To see the dynamic of fungi, bacilli and actinomyces communities from root region of ginseng with different growing years.Method With ginseng root region soils from several sampling sites of Jilin Province as materials, concentrations of fungi, bacilli and antinomyces were evaluated by spread-plate method. Result Though there are differences on statistic data among soil samples, commonly with the increasing of growing years, concentration of fungi in ginseng root region increased, which were on the contrary for bacilli and antinomyces, and bacilli changed even more significant than antinomyces. Conclusion Concentrations of soil microorganisms can be influenced by soil type, planting mode and growing years simultaneously, but growing years influenced even more significantly. 展开更多
关键词 GINSENG root region soil FUNGI BACILLI ACTINOMYCES
下载PDF
Influence of CO_2 Doubling on Water Transport Process at Root/Soil Interface of Pinus sylvestris var. sylvestriformis Seedlings 被引量:3
4
作者 韩士杰 张军辉 +2 位作者 周玉梅 王琛瑞 邹春静 《Acta Botanica Sinica》 CSCD 2001年第4期385-388,共4页
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc... Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process. 展开更多
关键词 CO 2 doubling Pinus sylvestris var. sylvestriformis seedlings root/soil interface water transport electric conductance of soil
下载PDF
Influence of the roots of mixed-planting species on the shear strength of saline loess soil 被引量:11
5
作者 LIU Ya-bin HU Xia-song +2 位作者 YU Dong-mei ZHU Hai-li LI Guo-rong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期806-818,共13页
In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L... In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L.,Elymus nutans Griseb.,Puccinellia distanx(L.),and Poa pratensis L.)and one shrub species(Caragana korshinskii Kom.)were investigated on the shear strength characteristics of saline loess soil.The root distribution characteristics were assessed via a survey when the plants grew for one year.The effects of the root biomass density,the root mass ratio(RMR)of the fine roots to the coarse roots,the moisture content,and the salt content on the shear strength index of the rooted soil were analyzed via a triaxial compression test,and the mechanism of these effects was discussed.The results indicate that the biomass density decreased linearly with increasing depth.The RMR initially decreased with depth and then increased,exhibiting in a quadratic relationship.The cohesion of the rooted soil increased linearly as the biomass density increased.The cohesion of the rooted soil initially increased with increasing RMR and salt content,and then it decreased.The turning point of the cohesion occurred when the RMR was 0.6 and the salt content was 1.18%.The internal friction angle of the rooted soil initially increased with biomass density and then decreased,and the turning point of the internal friction angle occurred when the biomass density was 0.015 g/cm3.The relationships between the internal friction angle of the rooted soil and the RMR and salt content were exponential incremental and linear subtractive relationship,respectively.Both the cohesion and the internal friction angle of the rooted soil linearly decreased with increasing moisture content. 展开更多
关键词 Xining Basin Herb species Shrub species rooted soil Saline loess soil soil reinforcement Shear strength index
下载PDF
Anchorage properties at the interface between soil and roots with branches 被引量:7
6
作者 Xiaodong Ji Lihua Chen Ao Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期83-93,共11页
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo... Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage. 展开更多
关键词 root-soil interface mechanics Pullout test method root branches Branch angle
下载PDF
Effects of Root Penetration Restriction on Growth and Mn Nutrition of Different Winter Wheat Genotypes in Paddy Soils 被引量:11
7
作者 LU Shi-hua, ZENG Xiang-zhong, LIU Xue-jun and ZHANG Fu-suo( Soil and Fertilizer Institute , Sichuan Academy of Agricultural Sciences , Chengdu 610066 , P.R.China Departmentof Plant Nutrition , Key Laboratory of Plant Nutrition , Ministry of Agriculture , Key Laboratory of Plant-SoilInteractions, Ministry of Education , China Agricultural University, Beijing 100094 , P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2002年第6期667-673,共7页
Effects of root penetration restriction on the growth and Mn nutrition of different wheat genotypes were studied in paddy soils using a method of nylon net bags (400 mesh) buried in the soil. The results showed that t... Effects of root penetration restriction on the growth and Mn nutrition of different wheat genotypes were studied in paddy soils using a method of nylon net bags (400 mesh) buried in the soil. The results showed that the spatial distribution of Mn in paddy soils played an important role in the growth and Mn nutrition of wheat crops. In the treatment where wheat roots were restricted in the plough layer by nylon net bags, the symptoms of Mn deficiency in wheat occurred much earlier and more seriously than usual. Of the two tested wheat genotypes, 80-8 was tolerant to Mn deficiency while 3295 was sensitive to Mn deficiency, respectively. The restriction of root penetration intensified symptoms of Mn deficiency of the Mn-deficient sensitive genotype (3295). The experiment demonstrated that well-developed roots with a strong ability to penetrate into the Mn-rich deep soil layer might explain the better tolerance of Mn deficiency in the tolerant genotypes. 展开更多
关键词 Wheat GENOTYPE Manganese root Paddy soil
下载PDF
Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils 被引量:14
8
作者 ZHU Yanhong, ZHANG Shuzhen, HUANG Honglin, WEN Bei State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第7期920-926,共7页
The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was... The effects of maize root exudates and low-molecular-weight-organic anions (LMWOAs) on the desorption of phenanthrene from eight artificially contaminated soils were evaluated. A significant negative correlation was observed between the amounts of phenanthrene desorbed and the soil organic carbon (SOC) contents (P 〈 0.01), and the influences of soil pH and clay content on phenanthrene desorption were insignificant (P 〉 0.1). Neither maize root exudates nor oxalate and citrate anions influenced desorption of phenanthrene with the addition of NaN3. A faster phenanthrene desorption occurred without the addition of NaN3 in the presence of maize root exudates than oxalate or citrate due to the enhanced degradation by root exudates. Without the addition of NAN3, oxalate or citrate at different concentrations could inhibit phenanthrene desorption to different extents and the inhibiting effect by citrate was more significant than by oxalate. This study leads to the conclusion that maize root exudates can not enhance the desorption under abiotic condition with the addition of NaN3 and can promote the desorption of phenanthrene in soils without the addition of NaN3. 展开更多
关键词 PHENANTHRENE DESORPTION low-molecular-weight-organic anions (LMWOAs) root exudates soilS
下载PDF
Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China 被引量:17
9
作者 ZHONG Rong-hua HE Xiu-bin +5 位作者 BAO Yu-hai TANG Qiang GAO Jin-zhang YAN Dan-dan WANG Ming-feng LI Yu 《Journal of Mountain Science》 SCIE CSCD 2016年第3期508-521,共14页
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank... Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(&gt;10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin. 展开更多
关键词 Bank stabilization root area ratio root tensile strength soil reinforcement Riparian zone Three Gorges Reservoir
下载PDF
Soil reinforcement by a root system and its effects on sediment yield in response to concentrated flow in the loess plateau 被引量:3
10
作者 Peng Li Zhanbin Li 《Agricultural Sciences》 2011年第2期86-93,共8页
The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge re... The importance of roots in soil conservation has long been underestimated due to a lack of sys-tematic studies conducted to evaluate root dis-tribution patterns and their effects on soil ero-sion. Current knowledge regarding root mor-phology and its impact on soil erosion by water is limited;therefore, detailed analysis of the role that root systems play in controlling soil ero-sion is needed. In this study, stratified runoff scouring at different soil depths in the field was conducted in a grassland area. The results in-dicated that both root biomass and soil wa-ter-stable aggregates decreased as soil depth increased at all three sites, while there was al-most no change in soil bulk density at 1.3g/cm3. Sediment yields under different runoff dis-charge at different sites showed similar trends, and the sediment yield increased as the soil depth increased at all three sites. Further analysis revealed that close relationships ex-isted between root biomass and the amount of water-stable aggregates and soil organic matter content, and that these factors greatly influ-enced soil erosion. Based on the data generated by the experiment, equations describing the relationship between sediment production at different soil depths and root biomass were determined. 展开更多
关键词 root soil Properties soil EROSION Sediment Yield LOESS PLATEAU
下载PDF
Acid Soil Is Associated with Reduced Yield, Root Growth and Nutrient Uptake in Black Pepper (<i>Piper nigrum</i>L.) 被引量:10
11
作者 Chao Zu Zhigang Li +5 位作者 Jianfeng Yang Huan Yu Yan Sun Hongliang Tang Russell Yost Huasong Wu 《Agricultural Sciences》 2014年第5期466-473,共8页
Low pH is a major limiting factor for the production of black pepper (Piper nigrum L.) in Hainan province. Black pepper gardens often exhibit a decrease in soil pH (to 5.5 - 5.0) on orchards with a multi-year producti... Low pH is a major limiting factor for the production of black pepper (Piper nigrum L.) in Hainan province. Black pepper gardens often exhibit a decrease in soil pH (to 5.5 - 5.0) on orchards with a multi-year production history. An exploratory hydroponic experiment was conducted to examine the effects of increasingly acid nutrient solution pH (7.0, 5.5, 4.0, and 3.5) on seedling growth, tissue nutrient concentrations and root morphological traits. The results indicated that low pH may directly inhibit root development and function, limit K, Ca and Mg absorption and reduce seedling growth. At pH 5.5, black pepper attained maximum growth, while the minimum growth occurred at pH 3.5. It can be concluded that low pH reduces plant growth and is associated with low root nutrient concentrations of Ca and Mg, which may explain the decline of the yield in the seven pepper gardens of the Institute. 展开更多
关键词 Nutrient Concentration PEPPER SEEDLING Growth pH root Morphology soil ACIDIFICATION
下载PDF
The inf luence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil 被引量:1
12
作者 LIN Li-rong HE Yang-bo CHEN Jia-zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1112-1120,共9页
Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage ... Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils. 展开更多
关键词 clayey soil root diameter root elongation soil compaction water stress
下载PDF
Effect of Long-term Drip Fertigation on Root Growth of Lychee and Soil pH 被引量:1
13
作者 DENG Lan-sheng TU Pan-feng +1 位作者 ZHANG Cheng-lin LI Zhong-hua 《Asian Agricultural Research》 2012年第4期80-84,共5页
Through field experiment,we explore the impact of long-term drip fertigation on growth and distribution of lychee root and changes of soil pH in different layers of soil in lychee garden.The results show that drip fer... Through field experiment,we explore the impact of long-term drip fertigation on growth and distribution of lychee root and changes of soil pH in different layers of soil in lychee garden.The results show that drip fertigation can significantly promote the growth of lychee roots,and increase the contact area of root and soil;if it experiences six years of drip fertigation successively,the dry weight of root,root length and surface area of root in soil in drip fertigation area,will be 2.29 times,2.17 times and 2.25 times that in non-drip fertigation area,respectively.The lychee root is mainly distributed in 0-40 cm layer of soil,but there is conspicuous difference between drip fertigation area and non-drip fertigation area in terms of root distribution in 0-20 cm and 20-40 cm layer of soil.Drip fertigation is more favorable for the root to go deep inside the soil.Under long-term drip fertigation,the soil acidification in lychee garden is prominent,and in comparison with non-drip fertigation area,there is the greatest decline in soil pH in 10-20 cm layer of soil in drip fertigation area,reaching 1.47 units. 展开更多
关键词 Drip fertigation Lychee root soil pH
下载PDF
Soil physical properties and maize root growth under different tillage systems in the North China Plain 被引量:13
14
作者 Baizhao Ren Xia Li +3 位作者 Shuting Dong Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CAS CSCD 2018年第6期669-676,共8页
The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient co... The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient content and depth of the plow layer under either long-term no-tillage or rotary tillage before winter wheat sowing and no tillage before summer maize sowing. In this study, we investigated the combined effects of tillage practices before winter wheat and summer maize sowing on soil properties and root growth and distribution in summer maize. Zhengdan 958(ZD958) was used as experimental material, with three tillage treatments: rotary tillage before winter wheat sowing and no tillage before summer maize sowing(RTW + NTM), moldboard plowing before winter wheat sowing and no tillage before summer maize sowing(MPW + NTM), and moldboard plowing before winter wheat sowing and rotary tillage before summer maize sowing(MPW + RTM).Tillage practice showed a significant(P < 0.05) effect on grain yield of summer maize. Grain yields under MPW + RTM and MPW + NTM were 30.6% and 24.0% higher, respectively, than that under RTW + NTM. Soil bulk density and soil penetration resistance decreased among tillage systems in the order RTW + NTM > MPW + NTM > MPW + RTM. Soil bulk densities were 3.3% and 515% lower in MPW + NTM and MPW + RTM, respectively, than that in RTW + NTM, and soil penetration resistances were respectively 17.8% and 20.4% lower,across growth stages and soil depths. Root dry matter and root length density were highest under MPW + RTM, with the resulting increased root activity leading to a yield increase of summer maize. Thus the marked effects of moldboard plowing before winter-wheat sowing on root length density, soil penetration resistance, and soil bulk density may contribute to higher yield. 展开更多
关键词 TILLAGE system SUMMER MAIZE soil PHYSICAL properties root
下载PDF
Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems 被引量:7
15
作者 Yinghu Zhang Jianzhi Niu +2 位作者 Weili Zhu Xiaoqing Du Jiao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期397-404,共8页
To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between... To characterize effects of plant roots on preferential flow(PF),we measured root length density(RLD)and root biomass(RB) in Jiufeng National Forest Park,Beijing,China.Comparisons were made for RLD and RB between soil preferential pathways and soil matrices.RLD and RB declined with the increasing soil depth(0–10,10–20,20–30,30–40,40–50,50–60 cm) in all experimental plots.RLD was greater in soil preferential pathways than in the surrounding soil matrix and was 69.5,75.0 and72.2 % for plant roots of diameter(d) /1,1 / d / 3 and3 / d / 5 mm,respectively.Fine root systems had the most pivotal influence on soil preferential flow in this forest ecosystem.In all experimental plots,RB content was the sum of RB from soil preferential pathways and the soil matrix in each soil depth.With respect to 6 soil depth gradient(0–10,10–20,20–30,30–40,40–50,50–60 cm) in each plot,the number of soil depth gradient that RB content was greater in soil preferential pathways than in the soil matrix was characterized,and the proportion was68.2 % in all plots. 展开更多
关键词 Preferential flow Preferential pathways soil matrix root length density root biomass
下载PDF
The Response of Winter Wheat Root to the Period and the After-Effect of Soil Water Stress 被引量:4
16
作者 YANG Gui-yu LUO Yuan-pei +1 位作者 LI Bao-guo LIU Xiao-ying 《Agricultural Sciences in China》 CAS CSCD 2006年第4期284-290,共7页
To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with str... To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments. In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage. 展开更多
关键词 the period of stress after-effect of stress soil water root winter wheat
下载PDF
Root Function in Nutrient Uptake and Soil Water Effect on NO3^- -N and NH4^+ -N Migration 被引量:2
17
作者 SONG Hai-xing LI Sheng-xiu 《Agricultural Sciences in China》 CAS CSCD 2006年第5期377-383,共7页
Root function in uptake of nutrients and the effect of soil water on the transfer and distribution of NO3^--N in arable soil were studied using summer maize (Zea mays L. var. Shandan 9) as a testing crop. Results sh... Root function in uptake of nutrients and the effect of soil water on the transfer and distribution of NO3^--N in arable soil were studied using summer maize (Zea mays L. var. Shandan 9) as a testing crop. Results showed that root growth and water supply had a significant effect on NO3^--N transfer and made NO3^--N distributed evenly from bulk soil to rhizosphere soil. Under a natural condition with irrigation, the difference of NO3^--N concentration at different distance points from a maize plant was smaller, while obvious difference of NO3^--N concentration was observed under conditions of limited root growth space without irrigation. Whether root growth space was restricted or not, the content of soil NO3^--N decreased gradually from 10 to 0 cm from the plant, being opposite to the root absorbing area in soils. When root-grown space was limited, changes of NO3^--N concentration at different distances from a plant were similar to that of water content in tendency. Results showed that NO3^--N could be transferred as solute to plant root systems with water uptake by plants. However, the transfer and distribution of NH4^--N were not influenced by root growth and soil water supply, being different to NO3^--N. 展开更多
关键词 soil water root development nutrient transfer NITRATE AMMONIUM
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
18
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation 被引量:25
19
作者 HU Xiao-tang, CHEN Hu, WANG Jing, MENG Xiao-bin and CHEN Fu-hong Agricultural College, Shihezi University, Shihezi 832003, P.R.China 《Agricultural Sciences in China》 CSCD 2009年第6期709-716,共8页
The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil ... The relation between soil water content and the growth of cotton root was studied for the scheme of field water and cotton yield under mulched drip irrigation. Based on the field experiments, three treatments of soil water content were conducted with 90%, 75%θf, and 60%θf (θfis field water capacity). Cotton roots and root-shoot ratio were studied with digging method, and the soil moisture was observed with TDR (time domain reflector), and cotton yield was measured. The results indicated that the growth of cotton root accorded with Logistic growth curve in the three treatments, the cotton root grew quickly and its weight was very high under 75%θf because of the suitable soil water condition, while grew slowly and its weight was lower under 90%θf due to water moisture beyond the suitable condition, and the root weight was in between under 60%θf For the three water treatments, the cotton root weight decreased with soil depth, and decreased more significantly in deeper soil layer with the soil moisture increasing. And the ratio of cotton root weight in 0-30 cm soil layer to the total root weight was the highest under 75%θf. The cotton root system was distributed mainly in the soil of narrow row and wide row mulched with plastic film, and little in the soil outside plastic film. The weight of cotton root was the highest in the soil of narrow row or wide row mulched with plastic film under 75%θf. Root-shoot ratio decreased with the soil moisture increasing. The soil water content affected cotton yields, and cotton yield was the highest under 75%θf. The higher soil moisture level is unfavorable to the growth of cotton root system and yield of cotton under mulched drip irrigation. 展开更多
关键词 mulched drip irrigation cotton (Gossypium hirsutum L.) soil water content root
下载PDF
Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland 被引量:10
20
作者 Yilihamu Yimamu 《Journal of Arid Land》 SCIE 2010年第4期243-249,共7页
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat... Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation. 展开更多
关键词 drip irrigation under plastic mulch soil moisture COTTON root length density
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部