RING is a really interesting new gene which plays important regulatory roles in many developmental processes as well as in plant-environment interactions. In the present report, the Zm RHCP1 gene encoding a putative R...RING is a really interesting new gene which plays important regulatory roles in many developmental processes as well as in plant-environment interactions. In the present report, the Zm RHCP1 gene encoding a putative RING-HC protein was isolated from maize and characterized. The Zm RHCP1 protein contained 310 amino acid residues with a conserved RINGHC zinc-finger motif and two transmembrane(TM) domains. Zm RHCP1 was expressed ubiquitously in various organs(root, stem, leaf, seedling, immature ear, and tassel), but its transcript levels were higher in vegetative organs than in reproductive organs. Moreover, the expression pattern of Zm RHCP1 in brace roots indicated that Zm RHCP1 functions in brace root initiation. In addition, Zm RHCP1 expression was regulated by abiotic stresses. The expression results suggested that Zm RHCP1 plays important roles in brace root development and abiotic stress responses. The findings of the present study provide important information to help us understand the function of Zm RHCP1 in maize.展开更多
A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using t...A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using the tooth surface distribution load from tooth load analysis, thecalculation model is established and the root stress is calculated by means of finite element meth-od. The method mentioned is verified by a tested gears example.展开更多
Betula luminifera is a commercial tree species that is emerging as a new model system for tree genomics research. A draft genomic sequence is expected to be publicly available in the near future, which means that an e...Betula luminifera is a commercial tree species that is emerging as a new model system for tree genomics research. A draft genomic sequence is expected to be publicly available in the near future, which means that an explosion of gene expression studies awaits. Thus, the work of selecting appropriate reference genes for q PCR normalization in different tissues or under various experimental conditions is extremely valuable. In this study, ten candidate genes were analyzed in B. luminifera subjected to different abiotic stresses and at various flowering stages.The expression stability of these genes was evaluated using three distinct algorithms implemented using ge Norm,Norm Finder and Best Keeper. The best-ranked reference genes varied across different sample sets, though RPL39,MDH and EF1 a were determined as the most stable by the three programs among all tested samples. RPL39 and EF1 a should be appropriate for normalization in N-starved roots,while the combination of RPL39 and MDH should be appropriate for N-starved stems and EF1 a and MDH should be appropriate in N-starved leaves. In PEG-treated(osmotic) roots, MDH was the most suitable, whereas EF1 a was suitable for PEG-treated stems and leaves. TUA was also stably expressed levels in PEG-treated plants. The combination of RPL39 and TUB should be appropriate for heat-stressed leaves and flowering stage. For reference gene validation, the expression levels of SOD and NFYA-3were investigated. This work will be beneficial to future studies on gene expression under different abiotic stress conditions and flowering status in B. luminifera.展开更多
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population...Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency.展开更多
Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL re...Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL related homeobox (WOX) family transcription factors, inhibits lateral root development in a sugar-dependent manner. The number of lateral root primordia increased in wox7 mutants but decreased in plants over-expressing WOX7o Plants expressing the WOX7-VP16 fusion protein produced even more lateral roots than wox7, suggesting that WOX7 acts as a transcriptional repressor in lateral root develop- ment. WOX7 is expressed at all stages of lateral root development, but it is primarily involved in lateral root initiation. Consistent with this, the wox7 mutant had a higher mitotic activity only at early stages of lateral root development. Further studies suggest that WOX7 regulates lateral root development through direct repression of cell cycle genes, particularly CYCD6;1. WOX7 expression was enhanced by sugar, reduced by auxin, but did not respond to salt and mannitoh In the wox7 mutant, the effect of sugar on lateral root formation was mitigated. These results together suggest that WOX7 plays an important role in coupling the lateral root development program and sugar status in plants.展开更多
A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution o...A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.展开更多
Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide(MgO) particles are being utilized in different fields...Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide(MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano-and microparticles(NPs and MPs) at a range of exposure concentrations(12.5, 25, 50, and100 μg/m L). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index(MI) when compared to control cells and the effect was more significant for NPs than MPs(at p 〈 0.05). Comet analysis revealed that the Deoxyribonucleic acid(DNA) damage in terms of percent tail DNA ranged from 6.8–30.1 over 12.5–100 μg/m L concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.展开更多
基金supported by the Taishan Scholar Seed Industry Plan,Shandong Province,China
文摘RING is a really interesting new gene which plays important regulatory roles in many developmental processes as well as in plant-environment interactions. In the present report, the Zm RHCP1 gene encoding a putative RING-HC protein was isolated from maize and characterized. The Zm RHCP1 protein contained 310 amino acid residues with a conserved RINGHC zinc-finger motif and two transmembrane(TM) domains. Zm RHCP1 was expressed ubiquitously in various organs(root, stem, leaf, seedling, immature ear, and tassel), but its transcript levels were higher in vegetative organs than in reproductive organs. Moreover, the expression pattern of Zm RHCP1 in brace roots indicated that Zm RHCP1 functions in brace root initiation. In addition, Zm RHCP1 expression was regulated by abiotic stresses. The expression results suggested that Zm RHCP1 plays important roles in brace root development and abiotic stress responses. The findings of the present study provide important information to help us understand the function of Zm RHCP1 in maize.
文摘A method for precise calculation of tooth root stress of spiral bevel gears is presentedand developed. On the basis of the machine settings analysis, tooth geometry anaysis and loadedtooth contact analysis, by using the tooth surface distribution load from tooth load analysis, thecalculation model is established and the root stress is calculated by means of finite element meth-od. The method mentioned is verified by a tested gears example.
基金financially supported by the National Natural Science Foundation of China(No.31300566)Zhejiang Province Science and Technology Support Program(No.2012C12908-8)
文摘Betula luminifera is a commercial tree species that is emerging as a new model system for tree genomics research. A draft genomic sequence is expected to be publicly available in the near future, which means that an explosion of gene expression studies awaits. Thus, the work of selecting appropriate reference genes for q PCR normalization in different tissues or under various experimental conditions is extremely valuable. In this study, ten candidate genes were analyzed in B. luminifera subjected to different abiotic stresses and at various flowering stages.The expression stability of these genes was evaluated using three distinct algorithms implemented using ge Norm,Norm Finder and Best Keeper. The best-ranked reference genes varied across different sample sets, though RPL39,MDH and EF1 a were determined as the most stable by the three programs among all tested samples. RPL39 and EF1 a should be appropriate for normalization in N-starved roots,while the combination of RPL39 and MDH should be appropriate for N-starved stems and EF1 a and MDH should be appropriate in N-starved leaves. In PEG-treated(osmotic) roots, MDH was the most suitable, whereas EF1 a was suitable for PEG-treated stems and leaves. TUA was also stably expressed levels in PEG-treated plants. The combination of RPL39 and TUB should be appropriate for heat-stressed leaves and flowering stage. For reference gene validation, the expression levels of SOD and NFYA-3were investigated. This work will be beneficial to future studies on gene expression under different abiotic stress conditions and flowering status in B. luminifera.
基金supported by the Ministry of Science and Technology of China(2011CB100305,2012AA100304)National Natural Science Foundation of China(31172015,31421092,31572186)+2 种基金Danish Strategic Research Council(NUTRIEFFICIENT 10-093498)European Community the Seventh Framework Programme for Research(NUE-CROPSFP7-CP-IP 222645)Chinese Universities Scientific Fund(2015ZH001)
文摘Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency.
文摘Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL related homeobox (WOX) family transcription factors, inhibits lateral root development in a sugar-dependent manner. The number of lateral root primordia increased in wox7 mutants but decreased in plants over-expressing WOX7o Plants expressing the WOX7-VP16 fusion protein produced even more lateral roots than wox7, suggesting that WOX7 acts as a transcriptional repressor in lateral root develop- ment. WOX7 is expressed at all stages of lateral root development, but it is primarily involved in lateral root initiation. Consistent with this, the wox7 mutant had a higher mitotic activity only at early stages of lateral root development. Further studies suggest that WOX7 regulates lateral root development through direct repression of cell cycle genes, particularly CYCD6;1. WOX7 expression was enhanced by sugar, reduced by auxin, but did not respond to salt and mannitoh In the wox7 mutant, the effect of sugar on lateral root formation was mitigated. These results together suggest that WOX7 plays an important role in coupling the lateral root development program and sugar status in plants.
基金the support of the Biotechnology and Biological Sciences Research Council and Engineering and Physical Sciences Research Council funding to the Centre for Plant Integrative Biologyfunding in the form of a Biotechnology and Biological Sciences Research Council Professorial Research Fellowship+1 种基金European Research Council Advanced Investigator Grant funding(FUTUREROOTS)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University
文摘A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.
基金the Director IICT, Hyderabad for providing funds and facility to execute this study
文摘Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide(MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano-and microparticles(NPs and MPs) at a range of exposure concentrations(12.5, 25, 50, and100 μg/m L). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index(MI) when compared to control cells and the effect was more significant for NPs than MPs(at p 〈 0.05). Comet analysis revealed that the Deoxyribonucleic acid(DNA) damage in terms of percent tail DNA ranged from 6.8–30.1 over 12.5–100 μg/m L concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.