期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.) 被引量:33
1
作者 HUANG Yizong, HU Ying, LIU Yunxia Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期647-653,共7页
Accumulations of copper (Cu) and cadmium (Cd) in six rice cultivars (94D-22, 94D-54, 94D-64, Gui630, YY-1, and KY1360) were evaluated through exposure to heavy metal contamination (100 mg/kg Cu, 1.0 mg/kg Cd, a... Accumulations of copper (Cu) and cadmium (Cd) in six rice cultivars (94D-22, 94D-54, 94D-64, Gui630, YY-1, and KY1360) were evaluated through exposure to heavy metal contamination (100 mg/kg Cu, 1.0 mg/kg Cd, and 100 mg/kg Cu + 1.0 mg/kg Cd) in a greenhouse. The dry weights of shoot and root, concentrations of Cu and Cd in plant tissues and the Cu, Cd, P, Fe concentrations in the root surface iron plaques were analyzed eight weeks later after treatment. The results indicated that the plant biomass was mainly determined by rice genotypes, not Cu and Cd content in soil. Separated treatment with Cu/Cd increased each metal level in shoot, root and iron plaques. Soil Cu enhanced Cd accumulation in tissues. In contrast, Cu concentrations in shoot and root was unaffected by soil Cd. Compared to single metal contamination, combined treatment increased Cd content by 110.6%, 77.0%, and 45.2% in shoot, and by 112.7%, 51.2% and 18.4% in root for Gui630, YY-1, and KY1360, respectively. The content level of Cu or Cd in root surface iron plaques was not affected by their soil content. Cu promoted Fe accumulation in iron plaques, while Cd has no effect on P and Fe accumulation in it. The translocation of Cu and Cd from iron plaques to root and shoot was also discussed. These results might be beneficial in selecting cultivars with low heavy metal accumulation and designing strategies for soil bioremediation. 展开更多
关键词 Cu Cd combined contamination soil UPTAKE ACCUMULATION root surface iron plaques
下载PDF
Soil Anti-Scouribility Enhanced by Plant Roots 被引量:33
2
作者 Zheng-ChaoZHOU Zhou-PingSHANGGUAN 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第6期676-682,共7页
The magnitude of soil anti-scouribility depends on the physical condition of the soil. Plant roots can greatly enhance soil stability and anti-erodibility. A scouring experiment of undisturbed soil was conducted to in... The magnitude of soil anti-scouribility depends on the physical condition of the soil. Plant roots can greatly enhance soil stability and anti-erodibility. A scouring experiment of undisturbed soil was conducted to investigate the effects of roots on soil anti-scouribility and its distribution in the soil profile. At the end of each erosion test, plant roots were collected from soil samples and root surface area was calculated by means of a computer image analysis system (CIAS). Root surface area density (RSAD), the surface area of the roots per unit of soil volume, was related to soil anti-scouribility. More than 83% of root surface area was concentrated in the 0 - 30 cm soil layer. Soil anti-scouribility increased with an increase in RSAD and the value of intensified soil anti-scouribility (ΔAS) can be expressed by exponential equations, depending on the plant species. These equations were ΔAS =9.578 6 RSAD0.8321 (R2= 0.951) for afforested Pinus tabulaeformis Carr, ΔAS = 7.808 7 RSAD0.7894 (R2= 0.974) for afforested Robinia pseudoacacia L., and ΔAS= 9.256 6RSAD0.8707 (R2= 0.899) for Bothriochloa ischemum L. 展开更多
关键词 Loess Plateau root surface area root soil anti-scouribility
原文传递
Intercropping of Sonchus asper and Vicia faba affects plant cadmium accumulation and root responses 被引量:6
3
作者 Yanqun ZU Li QIN +5 位作者 Fangdong ZHAN Jiong WU Yuan LI Jianjun CHEN Jixiu WANG Wenyou HU 《Pedosphere》 SCIE CAS CSCD 2020年第4期457-465,共9页
The cadmium(Cd)pollution of farmland soil is serious in the world.The present study investigated the effects of intercropping Vicia faba and the hyperaccumulator Sonchus asper on the Cd accumulation and root responses... The cadmium(Cd)pollution of farmland soil is serious in the world.The present study investigated the effects of intercropping Vicia faba and the hyperaccumulator Sonchus asper on the Cd accumulation and root responses(morphology and secreted organic acids)of plants grown on soil from a mining area in Yunnan Province,China,under different Cd stress levels(0,50,100,and 200 mg kg-1).Intercropping increased the biomass of both S.asper and V.faba,as well as the Cd accumulation and Cd transfer coefficient from roots to shoots of S.asper,but decreased those of V.faba in the 200 mg kg-1Cd treatment.The Cd concentrations in roots,shoots,and grains from intercropped V.faba plants were positively correlated(P<0.05)with the N,N-diethyl phenylacetamide-extractable Cd content in soil.In the 50 mg kg-1Cd treatment,intercropping decreased citric and malic acids in root secretions of S.asper.Intercropped V.faba secreted more citric,oxalic,acetic,and malic acid compared with S.asper.Intercropping also increased root length and root surface area of both S.asper and V.faba.At 50 mg kg-1Cd,root length for S.asper was higher than that at 0 mg kg-1Cd,whereas V.faba roots had significantly decreased length and mean diameter.Intercropping of S.asper and V.faba is suggested as an in situ phytoremediation strategy of Cd-contaminated soils and may improve the food quality of V.faba. 展开更多
关键词 organic acid PHYTOREMEDIATION root length root surface area transfer coefficient
原文传递
Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions 被引量:3
4
作者 Dongmei Zhou Shengyang Jin Lianzhen Li Yu Wang Nanyan Weng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第11期1852-1857,共6页
Extensive application of metal nanoparticles is attracting more attention because of their potential environmental risks.Many studies have focused on the uptake of metal nanoparticles (NPs) by plant,but the adsorpti... Extensive application of metal nanoparticles is attracting more attention because of their potential environmental risks.Many studies have focused on the uptake of metal nanoparticles (NPs) by plant,but the adsorption of nanoparticles on root surface is often mistakenly regarded as their uptake.This study optimized the methods to distinguish the adsorption and uptake of CuO-NPs on the wheat root by applying different metal competing ions (Na +,Mg 2+,and La 3+ ),surfactant (i.e.,sodium dodecyl benzene sulfonate,SDBS),or complexing agents like NaOAc and Na 4 EDTA,as well as ultrasonic technique.The results indicated that some CuO-NPs is strongly adsorbed on the plant root surface,and part of them by mechanical adhesion.Competing ions could not desorb the CuO-NPs from the root surface,while NaOAc and Na 4 EDTA well dissolved the adsorbed CuO-NPs.In addition,the uptake and adsorption of CuO-NPs increased with increasing exposure concentrations of CuO-NPs in the range of 5–200 mg/L.The amount of CuO-NPs adsorption is always lower than that of their uptake. 展开更多
关键词 CuO-NPs root surface ADSORPTION UPTAKE
原文传递
Effects of Optimized Root Water Uptake Parameterization Schemes on Water and Heat Flux Simulation in a Maize Agroecosystem 被引量:1
5
作者 Fu CAI Huiqing MING +3 位作者 Na MI Yanbing XIE Yushu ZHANG Rongping LI 《Journal of Meteorological Research》 SCIE CSCD 2017年第2期363-377,共15页
As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Althou... As root water uptake(RWU)is an important link in the water and heat exchange between plants and ambient air,improving its parameterization is key to enhancing the performance of land surface model simulations.Although different types of RWU functions have been adopted in land surface models,there is no evidence as to which scheme most applicable to maize farmland ecosystems.Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou,the RWU function in the Common Land Model(Co LM)was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer(W_x)and whether the baseline cumulative root efficiency required for maximum plant transpiration(W_c)is reached.The sensibility of the parameters of the optimization scheme was investigated,and then the effects of the optimized RWU function on water and heat flux simulation were evaluated.The results indicate that the model simulation was not sensitive to W_x but was significantly impacted by W_c.With the original model,soil humidity was somewhat underestimated for precipitation-free days;soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage;and sensible and latent heat fluxes were overestimated and underestimated,respectively,for years with relatively less precipitation,and both were simulated with high accuracy for years with relatively more precipitation.The optimized RWU process resulted in a significant improvement of Co LM’s performance in simulating soil humidity,temperature,sensible heat,and latent heat,for dry years.In conclusion,the optimized RWU scheme available for the Co LM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas. 展开更多
关键词 root water uptake land surface model water flux heat flux maize agroecosystem
原文传递
Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd^(2+) ion activity 被引量:3
6
作者 Ulrico J.López-Chuken Scott D.Young 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第7期1080-1085,共6页
A controlled hydroponic experiment was undertaken to investigate Cd uptake in relation to the activity of Cd species in solution other than the free ion (Cd^2+) by maintaining a constant Cd^2+ activity under varia... A controlled hydroponic experiment was undertaken to investigate Cd uptake in relation to the activity of Cd species in solution other than the free ion (Cd^2+) by maintaining a constant Cd^2+ activity under variable SO4^2- and Cl^- concentrations exposed to maize (Zea mays vat. Cameron) plants. The objectives of these experiments were: (1) to distinguish and quantify the different uptake rates of free and inorganic-complexed Cd from nutrient solution, and (2) to model the uptake of Cd by maize with a Biotic Ligand Model (BLM) in a system which facilitates the close examination of root characteristics. Results of the current experiments suggest that, in addition to the free ion, CdSO4^0 complexes are important factors in determining Cd uptake in nutrient solution by maize plants. Higher nominal SO4^2- concentrations in solution generally resulted in a greater Cd accumulation by maize plants than predicted by the Cd^2+ activity. A better integration of the complete dataset for the 3 harvest times (6, 9 and 11 days after treatment) was achieved by including consideration of both the duration of Cd exposure and especially the root surface area to express Cd uptake. Similarly, the fit of the BLM was also improved when taking into account exposure time and expressing uptake in terms of root morphological parameters. 展开更多
关键词 free ion activity model biotic ligand model root surface area Cd complexation metal exposure time HYDROPONICS plant uptake
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部