When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into acc...When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.展开更多
An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasi...An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities.展开更多
One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweig...One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.展开更多
To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar...To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.展开更多
The present study aims to investigate the difference of the operation process and the significant mechanical properties between expert workers and beginner workers clearly. The influence of the performance of the carb...The present study aims to investigate the difference of the operation process and the significant mechanical properties between expert workers and beginner workers clearly. The influence of the performance of the carbon fiber reinforced plastic (CFRP) molds made by subjects with difference skill level was discussed. Subjects were allowed to choose their process and molding tools. Subject A had 13 years,and subject B had 1 year of professional experience.The time spent usage of tools and process was recorded by a video camera used for analysis and comparison. Mechanical properties assessed in this study include tensile,compressive and Izod impact properties. The working time analysis shows that subject A needs short time for each process. On the other hand,subject B takes twice time to work for each process compared with subject A. From the surface and cross-section observation, it was found that the molding made by subject B had wrinkles all over and the disorderly inter-layer direction; on the contrary,the wrinkles on the molding surface of subject A are barely,and the inter-layer direction of which are more orderly. The results of tensile and Izod impact tests show that the surface winkles have little influence on the mechanical properties of the molding. According to the compression test and failure structure analysis in edge corner part,it was found that it had a great influence on the compression mechanical properties of the sample belonging to different subjects with different experience.展开更多
This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom ...This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.展开更多
A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweigh...A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweight and silent, however shows a little short stroke and small attracting force per each unit. In order to achieve enough output force and motion range of each finger, multiple SMA type artificial muscles with special device which facilitates enough length are equipped in the hand. The fundamental properties of the SMA type artificial muscle including output force and electrical response were determined experimentally and considered for the design of hand mechanism. Besides, the structure of each finger and whole system has been designed based on observation of human hand. The electrical hardware to control multiple shape memory alloy type artificial muscles has been also developed. Finally, the usefulness of the prosthetic hand has been investigated through experiments for grasping several types of objects.展开更多
Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Ka...Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Kawabata’s hand and silhouette evaluation methods, a software system was established. Then the mechanical properties, hand and silhouette of a fabric can be predicted quickly and accurately in terms of fiber configurations, yarn and fabric structures. The predictive result if unsatisfied can be revised by the function of “Help for designing modification”.展开更多
A premium composite grey element model is established and used for objective evaluation of fabric hand. Fabric hand is regarded as a grey system and the model is composed of fabric mechanical properties, which are pri...A premium composite grey element model is established and used for objective evaluation of fabric hand. Fabric hand is regarded as a grey system and the model is composed of fabric mechanical properties, which are primary hand attributes. Based on comparison with a standard model, fabric hand can be objectively evaluated.展开更多
为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力...为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力。对提取到的图像进行图像处理,使得更好的提取车顶焊缝的特征信息从而得到特征点坐标,采用B样条曲线法对机械臂进行轨迹规划。改进后的算法相较原YOLOv5算法的mAP值提升了6.76%,针对该系统进行实验并验证了提出的基于深度学习的双目视觉车顶焊缝涂胶机械臂系统的有效性。展开更多
基金supported by the National Natural Science Foundation (Grant No. 50435040 and 60675045)the National High Technology Research and Development Program (Grant No. 2006AA04Z228)the "111 Project" of China (No. B07018).
文摘When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.
基金Project(2008AA04Z203)supported by National High Technology Research and Development Program of China
文摘An underactuated finger structure actuated by tendon-driven system is presented.Kinematics and static analysis of the finger is done,and the results indicate that the prosthetic finger structure is effective and feasible.Based on the design of finger,a prosthetic hand is designed.The hand is composed of 5 independent fingers and it looks more like humanoid.Its size is about 85% of an adult's hand and weights about 350 g.Except the thumb finger,each finger is actuated by one DC motor,gear head and a tendon,and has three curling/extension joints.The thumb finger which is different from other existing prostheses is a novel design scheme.The thumb finger has four joints including three curling/extension joints and a joint which is used to realize the motion of the thumb related to the palm,and these joints are also driven by one DC motor,harmonic drive and a tendon.The underactuation and adaptive curling/extension motion of the finger are realized by joint torsion springs.A high-powered chip of digital signal processing(DSP)is the main part of the electrical system which is used for the motors control,data collection,communication with external controlling source,and so on.To improve the reliability of the hand,structures and sensors are designed and made as simply as possible.The hand has strong manipulation capabilities that have been verified by finger motion and grasping tests and it can satisfy the daily operational needs and psychological needs of deformities.
文摘One of the major problems faced by hand amputees is the unavailability of a lightweight and powered multi-functional hand prosthesis. Under-actuated finger designs play a key role to make the hand prosthesis lightweight. In this paper, a hand prosthesis with an under-actuated and self-adaptive finger mechanism is proposed. The proposed finger is capable to generate passively different flexion/extension angles for a proximal interphalangeal (PIP) joint and a distal interphalangeal (DIP) joint for each flexion angle of metacarpophalangeal (MCP) joint. In addition, DIP joint is capable to generate different angles for the same angle of PIP joint. Hand prosthesis is built on the proposed finger mechanism. The hand prosthesis enables user to grasp objects with various geometries by performing five grasping patterns. Thumb of the hand prosthesis includes opposition/apposition in addition to flexion/extension of MCP and interphalangeal (IP) joint. Kinematic analysis of the proposed finger has been carried out to verify the movable range of the joints. Simulations and experiments are carried out to verify the effectiveness of the proposed finger mechanism and the hand prosthesis.
文摘To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.
文摘The present study aims to investigate the difference of the operation process and the significant mechanical properties between expert workers and beginner workers clearly. The influence of the performance of the carbon fiber reinforced plastic (CFRP) molds made by subjects with difference skill level was discussed. Subjects were allowed to choose their process and molding tools. Subject A had 13 years,and subject B had 1 year of professional experience.The time spent usage of tools and process was recorded by a video camera used for analysis and comparison. Mechanical properties assessed in this study include tensile,compressive and Izod impact properties. The working time analysis shows that subject A needs short time for each process. On the other hand,subject B takes twice time to work for each process compared with subject A. From the surface and cross-section observation, it was found that the molding made by subject B had wrinkles all over and the disorderly inter-layer direction; on the contrary,the wrinkles on the molding surface of subject A are barely,and the inter-layer direction of which are more orderly. The results of tensile and Izod impact tests show that the surface winkles have little influence on the mechanical properties of the molding. According to the compression test and failure structure analysis in edge corner part,it was found that it had a great influence on the compression mechanical properties of the sample belonging to different subjects with different experience.
基金supported by the National High Technology Research and Development Programme of China(2006AA04Z255)the 111 Project(B307018)
文摘This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.
文摘A new prosthetic hand with a fixed thumb and four fingers actuated by Shape Memory Alloy (SMA) type artificial muscle has been developed in this paper. Different from typical geared motor, SMA actuator is lightweight and silent, however shows a little short stroke and small attracting force per each unit. In order to achieve enough output force and motion range of each finger, multiple SMA type artificial muscles with special device which facilitates enough length are equipped in the hand. The fundamental properties of the SMA type artificial muscle including output force and electrical response were determined experimentally and considered for the design of hand mechanism. Besides, the structure of each finger and whole system has been designed based on observation of human hand. The electrical hardware to control multiple shape memory alloy type artificial muscles has been also developed. Finally, the usefulness of the prosthetic hand has been investigated through experiments for grasping several types of objects.
文摘Equations that can predict worsted fabrics’ properties such as bending, shearing, compression, surface and tension, were achieved by means of theoretical and experimental studies. By combining these equations with Kawabata’s hand and silhouette evaluation methods, a software system was established. Then the mechanical properties, hand and silhouette of a fabric can be predicted quickly and accurately in terms of fiber configurations, yarn and fabric structures. The predictive result if unsatisfied can be revised by the function of “Help for designing modification”.
文摘A premium composite grey element model is established and used for objective evaluation of fabric hand. Fabric hand is regarded as a grey system and the model is composed of fabric mechanical properties, which are primary hand attributes. Based on comparison with a standard model, fabric hand can be objectively evaluated.
文摘为提高汽车工艺涂胶质量及机械臂作业效率,针对基于深度学习的双目视觉车顶焊缝涂胶机械臂系统,提出了一种SEmYOLOv5算法,在主干网络上增加SE(squeeze and excitation)注意力机制,同时在颈部网络上增加一组采样模块,提高焊缝的识别能力。对提取到的图像进行图像处理,使得更好的提取车顶焊缝的特征信息从而得到特征点坐标,采用B样条曲线法对机械臂进行轨迹规划。改进后的算法相较原YOLOv5算法的mAP值提升了6.76%,针对该系统进行实验并验证了提出的基于深度学习的双目视觉车顶焊缝涂胶机械臂系统的有效性。